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Abstract

The response of an imaging device to a colour signal depends on the combination of the

scene illuminant, surface reflectances and the device sensor sensitivities. If one is given

only the device responses, it is not possible to subsequently separate the components of

the colour signal, and this creates problems for many computer vision algorithms.

In this thesis, we focus on the interaction between illuminants and reflectances, and

analyse the problems of estimating, detecting, and removing illumination in images.

Our starting point is to look at the chromagenic theory, wherein two images are

taken of every scene: with and without a coloured filter, a similar situation as for the

macular pigment present in the human retina. We propose that some reflectances per-

form better than others and show, through experimentation on synthetic and real images,

that our bright-chromagenic algorithm outperforms current state of the art illuminant

estimation methods.

Changing the focus from estimation to discrimination and assuming there are a fixed

number of illuminants in a scene, we show that pixel-level illumination masks may

be determined. Moreover, using segmentation techniques, we are able to obtain very

accurate region-level masks.

Once multiple illuminants are detected, it becomes possible to remove them, so as

to depict the scene under a single one. In this work, we focus on the problem of shadow

removal and show that a simple, one-dimensional reintegration of gradient fields yields

artifact-free, shadow-free images.
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To adequately carry out the integration, we develop a method to output random

Hamiltonian paths on grid graphs that are “complete by downsampling” with linear

complexity. We further show that these paths can be efficiently used in other image-

processing applications, such as image segmentation, denoising and texture classifica-

tion.
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Chapter 1

Introduction

“Tis the First Sight and Second Thoughts ye have, and ’tis a wee gift an’ a

big curse to ye [...] First Sight is when you can see what’s really there,

not what your heid tells you ought to be there. Second sight is a dull

sight, it’s seeing only what you expect to see.”

Terry Pratchett, The Wee Free Men.

The human visual system routinely uses second sight. For example: snow almost

invariably appears white -it is one of its defining aspects- whatever the conditions are.

Similarly, luminance edges, such as the ones created by shadows, are never mistaken

for material changes: we do not see what is, but merely what we expect to see.

Artificial visual systems (such as cameras) on the other hand are blessed, or cursed,

by “First Sight”: they see the world as it is, without interpreting it. A signal resulting

from a white reflectance (snow) lit by a blue light source (e.g., the sky) is, from a

physical point of view, blue and will be seen as such by a camera.

As a consequence, computer-based applications designed to reproduce tasks from

the human visual system are fragile, and so one needs to incorporate additional infor-

mation: using “Second Thoughts” to look at a signal and analyze its meaning. This

1



CHAPTER 1. INTRODUCTION 2

definition is, however, very general and would, in fact, encompass most of computer

vision related research.

In this thesis, we restrict ourselves to the problem of interactions between light and

surfaces in images. The problems addressed in turn are: 1) estimating the light incident

upon a scene, 2) detecting the location of illuminants when several lights are present in

the image and 3) removing the effect of a light source on an image. In this last instance,

the primary focus will be on shadow removal, because of its prevalence and importance

in both vision and photographic applications.

The contributions we make in this work are: a robust method for illuminant esti-

mation: the bright-chromagenic algorithm. A novel algorithm for multiple illuminant

detection based on the chromagenic theory. We then go on to develop an algorithm that

allows us, under certain conditions, to output random Hamiltonian paths in linear time.

We show how those paths can be used to remove shadows within a robust framework

and provide additional “case studies” illustrating the possibilities of our Hamiltonian

path-based approach.

This thesis is organized in the following way: In the second chapter, we look at the

prior art and background of the image formation process. We review existing colour

constancy theories and methods and vision-based methods for illuminant detection and

removal.

The third chapter explores the problem of estimating illuminants. We present the

chromagenic theory of illuminant estimation and analyze its behavior. From this anal-

ysis, we develop the bright-chromagenic algorithm for illuminant estimation and show

that it remedies the weaknesses of the original formulation. We illustrate the perfor-

mance of our algorithm using various experiments and show that it significantly outper-

forms other existing illuminant estimation algorithms.

Chapter 4 is about detecting illuminants. We extend the invariant image methodol-

ogy which removes shadows based on incomplete edges in two ways: first, we show
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how discontinuities in edge maps can be completed and so how shadows can be iden-

tified. This insight then forms the basis of a region-based shadow removal algorithm.

We then show how the chromagenic theory can be applied to the more general illumi-

nant detection problem and demonstrate that we are able to obtain accurate illumination

masks for both indoor and outdoor multiply-lit scenes.

In Chapter 5 we look at removing shadows. We provide a robust framework for

shadow removal. Here we propose a graph-theoretical algorithm to generate a certain

class of random Hamiltonian paths in linear time and go on to show that they fit the

robust framework and deliver good results. We illustrate the performance of several

shadow removal algorithms on a variety of images. We further show that if the con-

ditions of shadow formation are known, then shadow regions can be removed without

using paths by adding a constant whose value is found through constrained minimiza-

tion.

Chapter 6 focuses on applications of Hamiltonian paths. In this chapter, we show the

usefulness of said paths in other areas of image processing. We concentrate on image

segmentation and scale-space. Namely, we exhibit algorithms that can effectively deal

with noise removal, image segmentation and texture classification. All those methods

stem from a theoretical proof that analyzing an image along one path is equivalent to a

1-dimensional processing, while analyzing the image according to a very large number

of paths corresponds to a 2-dimensional process.

Finally, Chapter 7 concludes this thesis by summarizing our findings and offers

insights into possible extensions of this work.



Chapter 2

Background

2.1 Colour Constancy & Illuminant Estimation

The image formation process within an imaging system, be it a human eye or a digital

camera, is dependent on three factors: the physical properties of the imaged surfaces

-referred to as reflectances-, the light incident upon those surfaces and the characteris-

tics of the imaging system. In general, numerical measurements made by the imaging

system do not allow for the subsequent dissociation of these factors: i.e., given an image

without additional information, one cannot invert that process and explicitly separate re-

flectance, illumination and the characteristics of the system. The problem of separating

illumination from reflectance is often referred to as the colour constancy problem.

The importance of solving for colour constancy is illustrated by the fact that a colour

signal captured by an imaging system is the combination of surface reflectance proper-

ties and illumination conditions. The difficulty lies in the variety of possible illuminants,

since even commonly encountered ones have very different spectral properties. Fig. 2.1

shows the same scene pictured under three standard illuminants: sky light, neon light

and tungsten light -a common light bulb. One can see that, despite the reflectances in

the scenes being identical, the colours in the images vary significantly and, as illustrated

4
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by the histograms underneath, so do the numerical values used to represent the images.

These variations significantly weaken the performance of algorithms that rely on color

information to detect [JR99] , recognize [TP91,MAU94] or track [JD03] objects within

a scene, as well as frameworks that deal with large image databases for indexing [SB91]

or scene analysis [KSK90].

Figure 2.1: Top row: the same scene under 3 different illuminants (a picture of a picture
taken in a light booth). Bottom: the histogram (red channel only) of those images. The
great variability of the colours despite it being the same scene create problems for many
applications.

The human visual system is however, to a certain extent, colour constant [BF97,

Bra98, AR86]. For instance consider the case shown in Fig. 2.2 where snow, which is

a white reflectance, is illuminated by the sky, a blue illuminant. The resulting colour

signal is therefore blue and this blueness is what the camera sees. To our eyes however,

the snow appears white, because our own visual system discounts the colour of the

illumination.

Apart from changes in illumination, both image intensity and perceived colour can

vary according to the shape of the objects, viewing and illumination geometry, thus

the general colour constancy problem is very hard indeed. To simplify the problem, a
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Figure 2.2: An outdoor scene as seen by a digital camera (Left) and as it would be perceived
by the HVS (Right)

Lambertian model of surface reflectance has been used by many researchers [MW86,

D’Z92,For90], where it is assumed that surfaces appear equally bright independently of

the viewing direction, i.e., they are ideal diffuse surfaces. Using this model, the image

formation process can be described as:

ρk =

∫
ω

E(λ)S(λ)Qk(λ)dλ (2.1)

In this equation S(λ) represents the surface reflectance. It defines the fraction of the

incident light that is reflected on a per-wavelength basis. E(λ) is the spectral power

distribution of the illuminant, which defines the power emitted by the illuminant in-

cident to S(λ) at each wavelength. Qk(λ) is the spectral sensitivity of the imaging

device’s kth sensor, specifying what proportion of the light incident at the sensor is ab-

sorbed at each wavelength. Multiplying these terms and integrating over ω, the range of

wavelength to which the sensors have a non-zero response, gives ρk: the response of the

imaging device’s kth sensor. In the case of the human visual system and digital cam-

eras, the range of wavelengths ω is generally the visible spectrum: 380-700[nm]. For

practical purposes, we concentrate on trichromatic imaging systems -that is, we have

three sensors whose sensitivities are concentrated in the long (red), medium (green) and

short (blue) part of the visible spectrum- and thus we will generally describe the sensor

responses as R,G and B. Fig. 2.1, shows that changing the spectral power distribution of
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the incident illuminant changes the sensor responses: light change is a first order effect.

Another way to measure colour is to look at sensor responses in terms of their chro-

maticity, obtained by discarding the intensity information. Chromaticities can be a

useful representation of sensor responses because changes in surface colour due to ge-

ometry and viewing angle typically depend on intensity, which is factored out in chro-

maticity space. There are many ways of discarding intensity information and we give

here two possibilities of doing so. Three dimensional chromaticities can be obtained

by:

ck =
ρk

ρR + ρG + ρB
, k = {R,G,B} (2.2)

That is, the sensor responses of each channel are normalized by the sum of the re-

sponses in all three channels. Used in some algorithms, two dimensional chromaticities

are obtained by dividing two of the sensor responses by the response of the third, for

example:

c1 =
ρR
ρG
, c2 =

ρB
ρG

(2.3)

To solve for colour constancy, one needs to transform the ρk (or the ck) so that they

correlate with S(λ), i.e., become independent of E(λ). It has been shown in [HHFD97]

that when the illumination is known it is relatively easy to recover an image that is

independent of the illuminant. We will hence focus on solving for colour constancy by

estimating the scene illuminant.

2.1.1 Discrete Model

The difficulty of the colour constancy problem is linked with the number of degrees of

freedom it takes to determine lights and surfaces. We begin with the observation that

spectral quantities can be sampled at m points and the image formation equation (2.1)
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can be rewritten as:

ρk =
m∑
i=1

E(λi)S(λi)Qk(λi)∆λ (2.4)

where the λi are the sample points and ∆λ is the sampling interval. Sampling at inter-

vals ∆λ ' 10[nm] results in human colour responses which are visually indistinguish-

able (when assessed using colour difference formula) from the same spectrum at a finer

sampling [Wan95]. From equation (2.4), we see that if there are n different surfaces in

the image, we have 3n known values -the RGB sensor responses. However, if surfaces

and illuminants are both described with the discrete model we have m(n+ 1) unknown

values to solve for, as each one of the m sampling points describes n surfaces plus a

light component.

The number of parameters can, pragmatically, be reduced to 3n + 3 using the fact

that light and surfaces, in a trichromatic imaging system, are described by 3 parameters

each. That is, we can change the goal of colour constancy to recovering the RGBs of

the surfaces and lights in a scene. Using 2D chromaticity vectors instead of 3D sensor

outputs, one can further decrease the number of parameters to 2n + 2. However, the

number of known values then stands at 2n, so the problem remains under-constrained.

An alternate way to look at the discretisation of equation (2.1) is to describe the

SPD of illuminants and surface reflectance functions as sums of basis functions. The

surface reflectances S(λ) can be approximated as:

S(λ) =

dS∑
i=1

Si(λ)si (2.5)

where the Si(λ) are basis functions for reflectances and s is a 1× dS vector of weights.

To adequately model the space of reflectances one needs between 3 and 8 basis func-
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tions, depending on the desired accuracy [PJ89]. Similarly, E(λ) can be rewritten as:

E(λ) =

dE∑
i=1

Ei(λ)ei (2.6)

Judd in [JMW64] showed that daylight illuminants are well modelled by 3 basis func-

tions.

The basis functions can be chosen by separately performing principal component

analysis on reflectance and illuminant data [Coh64, MW86]. Marimont and Wandell

in [MW92] however proposed that sensor responses themselves are to be used to find

the basis functions. They concluded that 3 basis functions, dS = 3 and dE = 3, were

sufficient to model most reflectances under a variety of illuminations (this work ef-

fectively links the idea of describing light and surface colour by the RGBs with the

basis approach). Substituting equations (2.5) and (2.6) in (2.1) allows us to rewrite the

image formation equation as a matrix transform, where a lighting matrix Λ(e) maps

reflectances from s onto the sensor responses ρ.

ρ = Λ(e)s (2.7)

where the kjth term of this lighting matrix is equal to:

Λ(e)kj =

∫
ω

Sj(λ)Qk(λ)

[
dE∑
i=1

eiEi(λ)

]
(2.8)

In [MW86], Maloney and Wandell have shown that a trichromatic system that views

surfaces under an unknown illuminant can, through algebraic means alone, recover

two reflectance descriptors per surface, implying that if lights can be modelled as 3-

dimensional, surface reflectances have to be 2-dimensional for perfect recovery to be

possible. This result, while mathematically interesting, is not useful in practice. It

would be useful if the world was composed of shades of yellows and blues, since then
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colour would be 2-dimensional. But we wish to have reds too: colour is always 3-

dimensional.

This finite dimension model approach has also been investigated in the case of

changing illumination -the same scene under different lights- by D’zmura and Iver-

son [DI93]. Their idea was to recover three reflectance descriptors per surface us-

ing multiple views. They show that recovery is possible when the same surfaces are

rendered under different lights. Leaving aside the plausibility of this assumption, the

method is numerically unstable and tends to work only when the assumed model holds

exactly. This idea that constancy might be easier when we have more than a single RGB

measurement per pixel is one we will return to in this thesis.

2.1.2 Assumptions About the World

The methods presented in the previous section use reduced dimensional models to deal

with the under-constrained nature of the problem. Another, widely used, approach to

solve for color constancy is to make assumptions about the world. These methods

usually try to estimate the colour of the illuminant, i.e., the 3-dimensional vector ρE

corresponding to the RGB values of an achromatic reflectance observed under the scene

illuminant.

The first approach, generally known as Max-RGB proposes that the colour of the

illuminant can be estimated by taking the maximal sensor response in each colour chan-

nel, that is:

ρE = [max(ρR),max(ρG),max(ρB)] (2.9)

This estimation is accurate on the condition that the observed scene contains a white-

like surface; that is, a surface that reflects light equally at all wavelengths and that is
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also maximally reflective. For that surface, equation (2.1) becomes:

ρk =

∫
ω

E(λ)Qk(λ)dλ, S(λ) = 1 ∀λ ∈ ω (2.10)

and thus the sensor responses only depend on the light. We note that for this method

to work, a white surface is not strictly necessary. Instead, one can imagine a blue and

a yellow surface where max(ρB) will be based on the blue surface, while max(ρR) and

max(ρG) will be calculated with the yellow reflectance.

This method was implicitly proposed in Land’s Retinex algorithm [LM71]. The

Retinex was originally intended to be a computational model of human vision that as-

sumed human perception was based on relative responses. That is, colour perception

of a surface does not depend on its intrinsic RGB values, but rather on the relation of

its RGBs to the ones in its surroundings. Moreover, McCann has argued in a series of

studies that the maximum plays a crucial role in colour perception [MMT76, McC04].

Another commonly used method to estimate illuminants is the so-called Gray-World

algorithm. In Gray-world, one estimates the illuminant by calculating the average, over

the whole image, of the sensors response in each channel:

ρE = [mean(ρR),mean(ρG),mean(ρB)] (2.11)

This algorithm has been proposed in various forms [Buc80, GJT88] and assumes that

the average, over all the N pixels in the image, of the reflectances is constant over the

visible spectrum:
N∑
i=1

Si(λ)

N
= α(λ) = α, α ∈]0, 1] (2.12)

where α can take any value but is generally assumed to be 0.5 (true gray). If equation

(2.12) holds, then the illuminant can readily be estimated. Since an achromatic surface
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reflects light at all wavelengths equally, the sensor responses therefore become:

ρk = α

∫
ω

E(λ)Qk(λ)dλ (2.13)

A problem with the original formulation [Buc80] is that, because the average is cal-

culated over all the pixels, the algorithm is biased towards large areas. Gershon et

al. [GJT88] have proposed a modified algorithm such that each reflectance in the image

has an equal weight, independently of its size.

A different gray-world like method, named database grayworld, has been proposed

in [BCF02] where instead of assuming the average of the reflectances to be gray, it is

chosen to be the average of a reflectance database -if possible, the one on which the

algorithm is tested. Let µ
DB

be the mean vector, over the database, of the reflectances

and µ be the observed mean of a scene. This method performs better than the sim-

pler grayworld formulation as the assumption has a better chance of being verified. In

mathematical terms, we have that:

µ
DB

= [µDB(ρR), µDB(ρG), µDB(ρB)] (2.14)

and

µ = [µ(ρR), µ(ρG), µ(ρB)] (2.15)

The quantities µ
DB

and µ are related by a 3× 3 diagonal matrix, D, where:

µ
DB

= Dµ (2.16)

with

D =


µDB(ρR)
µ(ρR)

0 0

0 µDB(ρG)
µ(ρG)

0

0 0 µDB(ρB)
µ(ρB)

 (2.17)
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The color of the estimated illuminant ρE is then equal to the diagonal terms of D. The

idea of mapping RGBs using a 3×3 diagonal matrix is often referred to as the diagonal

model. It is generalized by supposing that if a scene is imaged under two different

lights, E1 and E2, the sensor responses can then be written as:

ρ
1

= Λ(e1)s and ρ
2

= Λ(e2)s (2.18)

The mapping between the sensors responses is then defined by:

ρ
1

= Λ(e1)Λ(e2)
−1ρ

2
(2.19)

In the database grayworld method, the average values of the scene are mapped onto the

database average, which is what the matrix D does.

More recently, Finlayson and Trezzi developed a framework based on the Minkowski

norm families [FT04]. They showed that both the gray-world and max-RGB assump-

tions were particular instances of Minkowski norms:

µp(X) =

(∑N
i=1 |Xi|p

N

) 1
p

(2.20)

Where µp is the p-norm of X . Taking this norm on each channel (R,G,B) separately,

one sees that p = 1 corresponds to taking the mean -like grayworld- and that p = ∞

is equivalent to taking the maximum value -like Max RGB. The authors investigated

whether a “shade of gray” could be a more appropriate assumption and found that any

p ∈ [4, 6] was a better performing norm than either 1 or∞.

The shade of gray method has been corroborated by Van de Weijer and Gevers

in [vdWG05] where the norm of RGB differences is shown to work equally well, albeit

with slightly different values of p.
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2.1.3 Statistical Framework and Set of Solutions

We have seen in the beginning of this chapter that the colour constancy problem is

underconstrained. This implies that, in general, there is no unique solution for the

combination of lights and surfaces in a scene giving rise to an image. A common goal of

most of previously presented algorithms, however, is to solve for a unique answer. With

that in mind, more recent algorithms have adopted the approach of seeking the set of all

possible solutions and finding, within this set, the best solution to the colour constancy

problem. A different approach is to compute the likelihood of different solutions under

some weak probabilistic assumptions, the scene illuminant estimate can then be chosen

to be the most likely. So, why are there multiple solutions?

A reddish RGB sensor response is consistent with both the image of a white surface

observed under a red light and a red surface observed under a white light. In [For90],

Forsyth developed an algorithm, named CRULE, to exploit this fact. CRULE is based

on colour gamuts: the set of all RGBs that can be observed under a given light. Forsyth

showed that these gamuts are convex, bounded and are subsets of the possible image

colours. The colour gamut of a light can therefore be constructed by calculating the

convex hull of RGB responses given by all surfaces observed under that light.

Forsyth’s gamut mapping theory shows how these gamuts can be used in solving for

colour constancy. When presented with a test image, the candidate solutions for colour

constancy are the lights for which all of the image colours fall within their likely gamut.

Once the set of feasible illuminants has been determined, the second step is to select

a single illuminant from that set as an estimate of the scene illuminant.

In Forsyth’s original formulation, the illuminants themselves are not explicitly rep-

resented. They are, instead, defined by the 3 × 3 diagonal matrix that transforms the

sensor responses to what their values would be if the scene was observed under a known,

canonical, illuminant -it is the same diagonal mapping approach as shown in equations

(2.18) and (2.19). With respect to this methodology, any map (a 3× 3 diagonal matrix)
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that takes the gamut of the image inside the canonical gamut represents a candidate

light. The selected illuminant map is the one which leads to the largest gamut volume

(image colours are effectively made as colourful as possible).

In [Fin96] Finlayson proposed two additional ideas to the gamut mapping theory.

The first one is that features like shape and shading affect the magnitude of the recov-

ered light but not its colour. Thus, he proposed to perform gamut mapping in a 2D

chromaticity space, using c1 = R
B

and c2 = G
B

. With respect to this chromaticity space,

illuminant change is a 2D diagonal map (a 2 × 2 diagonal matrix). As such, Forsyth’s

theory is directly applicable with the advantage of a simpler and faster implementation.

The second idea is that the mappings themselves can be constrained by restricting them

to expected illuminants, for instance purple illuminants do not occur in practice.

Barnard proposed in [Bar99] that, instead of selecting the estimate of the scene illu-

minant as one light among the set of plausible illuminants, one could take the numerical

average of the set as the estimate of the scene illuminant. This method to select an es-

timate from the set was found to yield better estimations than Forsyth’s or Finlayson’s

methods, although Finlayson and Hordley reported in [FH99] that taking the median

instead of the mean gave the best results overall.

A complementary way to deal with the ill-posedness of the colour constancy prob-

lem is to use a probabilistic framework. In colour by correlation [FHH01], the scene

illuminant is estimated by first comparing the chromaticities of the test image -in this

work, lights are represented by 2D chromaticity distributions- to the 2D chromaticity

distributions of expected illuminants in the set. Each image chromaticity has a certain

likelihood of occurring under a given illuminant (e.g., the bluest chromaticity cannot

be observed under the reddest light) and the sum of those likelihood values defines the

plausibility of each test illuminant being the scene illuminant, i.e.,

l(E|Cim) =
∑
∀c∈Cim

log(p(c|E)) (2.21)
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where l is the likelihood function of E being the scene illuminant given the chromatic-

ities of the image Cim and p(c|E) is the probability of observing the 2D chromaticity

vector c under the illuminant E. An implementation of colour by correlation in a 3D

RGB color space instead of a 2D chromaticity has been proposed in [BMF00].

Brainard and Freeman in [BBS97] have formulated colour constancy as a Bayesian

problem but used the finite linear model to represent light and surfaces as a weighted

sum of basis functions, as represented in equations (2.5) and (2.6). In their work, basis

functions and their weights were found using principal component analysis. Bayesian

decision theory is then used to recover the combined vector of weights of surfaces and

light in the image. The number of dimensions to recover -three for each reflectance in

the image plus three for the light- is however too large for the algorithm to be used in

practice (in [BBS97], only up to eight reflectances could be analytically recovered in a

reasonable time).

Other probabilistic approaches that use either voting, soft probabilities or neural

networks have been investigated. In [DI94], D’Zmura and Iverson used a linear model

of surface reflectance and illumination -equations (2.5) and (2.6)- to derive the probabil-

ity of observing a chromaticity coordinate (in the CIE-xy sense [WS82]) under a given

illuminant. By selecting a large number of surfaces, a good estimate of the probability

can be obtained.

An algorithm where the illuminant is selected by voting has been proposed by

Sapiro in [Sap85,Sap98]. As in [DI94], lights and surfaces are represented using linear

models that define a probability distribution. For each RGB triplet, this distribution is

used to select a reflectance from sensor responses and then to estimate the illuminant.

If the illuminant is deemed realistic -i.e., it falls on or near the expected lights- a vote is

cast in favor of that illuminant. This process is repeated for all RGBs in the image and

the selected estimate of the illuminant will be the candidate that has the most votes.

Finally, a neural network approach to colour constancy has been proposed in [CFB02].
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This method takes as an input to the neural net a binary chromaticity histogram and

outputs the estimated 2D chromaticity of the illuminant white point (that is, the colour

observed when the illuminant is reflected by a white surface). While this approach can

deliver good estimates, results from [BMCF02] and [HF06] suggest that its performance

is strongly dependent on the training set being similar to the testing set.

2.1.4 Illuminant Estimation: The Current Level of Performance

At this point, we might want to look back at the presented algorithms available for

illuminant estimation and assess their performance. The accuracy of the illuminant es-

timation is generally assessed using the angular error, an intensity independent measure

between the sensor responses of a white reflectance under both the estimated and actual

scene illuminant. If we denote those responses by ρ
est

and ρ
E

respectively, the angular

error eAng is calculated as:

eAng = acos(
ρT
E
ρ

est

‖ρ
E
‖ ‖ρ

est
‖

) (2.22)

Our own experiments find that an angular error lower than three degrees is necessary

for pleasing image reproduction. In other work, Funt et al. in [FBM98] found that the

current angular error delivered by most algorithms is not sufficient to support colour-

based object recognition.

More recently, Barnard et al [BMCF02] have devised a framework to compare dif-

ferent algorithms based on their freely available dataset [Bar02]. They measured the

error between the estimated and actual illuminant of a variety of algorithms on both

synthetic and real data.

In both these studies, the accuracy of the illuminant estimation algorithm is sum-

marized as either the mean or Root Mean Square (RMS) angular error over the entire

dataset. However, in [HF06] Hordley and Finlayson showed that, if one wants to sum-



CHAPTER 2. BACKGROUND 18

marize the performance of an illuminant estimation algorithm over a dataset, one should

use the median angular error instead of the mean or RMS. The use of a median statistic

also permits to assess if the difference of performance between two algorithms is sta-

tistically significant at chosen confidence level using, for example, the Wilcoxon sign

test [HT01].

Irrespectively of the chosen metric, all these studies concluded that the more com-

plex methods such as colour by correlation and gamut mapping performed significantly

better than simpler, assumption based, methods like max-RGB and gray-world. In prac-

tice, however, the simpler methods are still commonly used because their lower com-

plexity enables the images to be processed at a very high speed.

2.1.5 Non-Lambertian Algorithms

An aspect not really treated in this chapter is that the vast majorities of the methods pre-

sented assume a Lambertian model of surface reflectances and flat surfaces. There ex-

ist, however, some algorithms that use non-Lambertian constraints in solving for colour

constancy. For dielectric materials, it is known that the highlight colour is the same as

the prevailing light, and so numerous algorithms have been developed for finding the

specular colour, see [KSK88, TW89, FS99, TNI03].

The presence of mutual illumination [FDH91] or shadows [FF94] has also been

used as a cue to solve for colour constancy.

These algorithms have the weakness that they all require their respective physics-

based assumptions to be present within the scene. Additionally, one also needs to know

the location of features such as highlights, shadows or mutual illumination in this image;

this is a difficult task. The physical assumptions made by these algorithms are often

violated in real images and thus, the performance of these methods can be unreliable on

general data.
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2.2 Multiple Illumination & Illuminant Detection

Almost all illumination estimation algorithms previously introduced have something

important in common, they aim to recover the supposed unique scene illuminant. Im-

ages bearing multiple illuminants are however frequent in natural scenes: the use of

a flash, the presence of shadows or indoor images comporting both office light and

daylight are all instances where more than one illuminant is present in the resulting

image; an example of a typical scene with multiple illuminants is shown in Fig. 2.3a.

Since colour constancy is generally an underconstrained problem, adding another un-

known illuminant to a scene will further complicate the image analysis. Moreover, if

an algorithm estimates a single illuminant but two or more are present in an image, the

estimation will necessarily be wrong.

In fact, the multiple light problem is even more complicated than one might think.

For example: in a scene lit by two distinct illuminants E1 and E2, a given pixel can be

illuminated by either E1, E2 or a combination of both Emix = αE1 + βE2. An illustra-

tion of the multiple illumination of images is shown in Fig. 2.3b where the prevailing

illuminant is highlighted.

Figure 2.3: An indoor scene with 2 ambient lights: sunlight through the windows and ceiling
lighting. Scene geometry plays a role in how the pixels are illuminated. Right: regions of the
image predominantly illuminated by E1 (red) and E2 (blue)
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For the sake of simplicity, we will focus on the case where two distinct illuminants

are present in the image. Considering the image formation process at a pixel level,

equation (2.1) can be rewritten as:

ρXk =

∫
ω

EX(λ)SX(λ)Qk(λ)dλ (2.23)

where ρXk is the response of the sensor at pixel location X , EX(λ) is the incident light

on pixel X and SX(λ) is the scene reflectance at location X . In this case, even if

we know both illuminants, E1 and E2, and the sensor sensitivities, the problem is still

ill-posed. This is because the sensor responses ρXk can be described by either

ρXk =


∫
ω

EX
1 (λ)SX1 (λ)Qk(λ)dλ if the light incident to X is E1 (2.24a)∫

ω

EX
2 (λ)SX2 (λ)Qk(λ)dλ if the light incident to X is E2 (2.24b)

Knowing the illuminants is therefore not sufficient to recover the scene reflectances.

One also needs to know which part of the image is illuminated by which light. Because

of the difficulty of the multiple illumination problem, most of the research is focused

not on estimating these illuminants but on detecting the prevailing light incident at a

pixel; once detected, the illuminants can then be estimated separately.

The bulk of both prior art and current research in illuminant detection focuses on

finding shadows in images, by far the commonest occurrence of multiply illuminated

scenes.

2.2.1 Shadow Detection

A shadow is cast in a scene when an object lies in the path of the direct illumination

source. If a scene is illuminated by two or more sources, then the shadow and non-

shadow regions of an object may differ not just in terms of their relative brightness, but
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also in terms of their relative colour. For example, in a typical outdoor scene, the non-

shadow parts of the image are illuminated by a mixture of direct sunlight and skylight.

In contrast, shadow regions are lit mostly by skylight. These two illumination sources

differ significantly both in brightness and colour -see Fig. 2.4 for an illustration- and, as

a result, so do the image pixel values corresponding to shadow and non-shadow regions.

Figure 2.4: An outdoor image containing a shadow. And the SPD of both illuminants:
sun+sky light and sky-light only. Note the difference across the visible spectrum.

In photography, shadows are often accidental and/or unwanted artifacts that in some

conditions (e.g., cityscapes, flash) cannot be avoided. Finally, when working with im-

ages that have a large bit depth, the presence of a shadow can indicate a High Dynamic

Range (HDR) image. HDR images cannot be displayed on typical CRT monitors, how-

ever, if one can remove or attenuate the shadow, the dynamic range can then be com-

pressed and the image properly displayed.

Detecting shadows is a difficult problem since shadows are created in diverse ways

and can greatly vary in intensity, colour, shape and sharpness. As a result, additional

information is often needed for an accurate detection.

In essence, what distinguishes the shadow problem from the general multiple illu-

mination one is that shadows are generally darker than their surroundings. The problem

caused by shadows in computer vision applications is, however, essentially the same,

that is a lot of algorithms for a variety of tasks can fail in cases of changing illumination
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conditions.

We can categorize detection methods in broadly two different approaches: video-

based, where extra information is provided in the form of an image sequence, and single

image methods where one recovers shadows either via user supplied hints or through a

physical model of shadow formation.

We give here an overview of the most recent methods of shadow detection. Older

methods have been reviewed in a comparative study by Prati et al. in [PTMC03] whose

conclusion was that specific methods are desirable for better performance, for most of

them are not readily “portable” between different applications.

Video-based methods

In almost all video methods, the input is a sequence of images taken from a fixed camera

and the desired output is a background image that is free of shadows.

Weiss in [Wei01] observed that given an outdoor video sequence over a long period

of time: cast shadows (due to objects occluding the sun) move. It follows that the edges

which are constant throughout the frames are related to the scene structure and not to

the shadows. Weiss showed that a shadow free background could be obtained by taking

the median edges of the sequence, effectively removing the shadows without extracting

them.

Weiss approach has been extended by Matsushita et al. in [MNIS02] and [MNIS04]

using several light sources and multiple cameras to recover, using multiview stereo al-

gorithms, a view-dependant model of a reflectance only background image. They were

also able, with a thresolding operator, to recover shadow masks from the illumination

images.

In [LDB06], Leone et al. looked at frame differences from video surveillance data.

Their goal was to distinguish textured objects from shadows using a Matching Pursuit

algorithm [MZ93]. The idea of using texture classifiers has also been used in [HHD99]
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and [SMO99] based on the assumption that, while shadows alter both brightness and

colour, the texture of a shadow region is essentially unchanged from its non-shadow

equivalent and so, texture information can therefore be used in finding out whether a

moving element in a sequence is a shadow cast by an object or the object proper.

In an approach based on computer graphics natural image matting methods, Chuang

et al. [CGC+03] have been able to extract both shadow and lit images from a video.

Their method however assumes a that primary point light source illuminates the scene

and that fairly strong shadows are cast.

A multi-image method, as opposed to a video proper, has been proposed by Yoon et

al. [YKE02]. The starting point is two -or more- images of the same scene illuminated

by different point light sources. Using the difference between those images, they could

both determine the shadows in the scene and render the object without shadows. While

providing good results, this method requires a fairly controlled environment and is not

practical outside of the lab.

Other multi-image methods are popular in remote sensing. In this framework, both

images and potential shadows are constrained to a specific class, detecting cloud shad-

ows in earth-like images, and are therefore not readily applicable to a more general

problem (see [SF90] and [WHR91] for examples).

Single Image Methods

The single image problem of detecting shadows from the information present in only

one image is more general but also more difficult than its video counterpart since less

information is readily available.

Jiang et al. in [JW94] detected shadows by segmenting the input image and classify-

ing its regions as either shadow or non-shadow. To do so, they proposed that the darkest

image regions are possible shadows. These candidates were then evaluated based on

their geometry, assuming that the shape of shadow regions differed from the one of ac-
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tual objects. This approach suffers from its simplicity and is only accurate in scenes

with simple object shapes and non-textured backgrounds.

Following a gradient-based approach, Tappen et al. [TFA03] classified image deriva-

tives, depending on their direction and amplitude, as either shadow induced, material

induced or undetermined. This three-way labelling is obtained with a classifier trained

on a variety of reflectance and shadow transitions. The undetermined derivatives are

then, in a second step, assigned a shadow or material label using a belief propagation

algorithm that propagates information from reliably classified pixels.

In [LB05], Levine et al. also classified image edges as either shadow or material

changes. They used a support vector machine, trained on colour and luminance ratios,

for classification. In their method, it is assumed that a shadow transition occurs when

there is an important change in luminance coupled with a weaker change in colour.

Based on their detection results, they also proceeded to remove shadow regions from the

image by assigning them the average brightness and colour values of their neighboring

regions.

Both the Levine and Tappen approaches often work well. However, there are signif-

icant failures which manifest themselves in images: not all shadows are removed and

there can be edge artifacts. In part these methods fail because some pixel derivatives

can indicate both a shadow and a material edge, a common occurrence in the case of

occlusion shadows.

More recently, Wu and Tang [WT05] used a Bayesian approach to extract shadows

where they opted for user supplied hints to disambiguate regions that could be wrongly

estimated by an automatic method. Their method delivers good results but cannot be

ported to an automatic framework.

To alleviate the problem of training classifiers or having to rely on user supplied

data, we propose to expand the physics-based method of Finlayson et al, first proposed

in [FH01] that we discuss in more detail in section 2.2.2
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2.2.2 Invariant Images for Shadow Detection

In this section, we look at the construction of shadow free images based on physical

constraints proposed in [FH01], which takes a regular colour image as input and gives

1D, illumination invariant, representation of the image that is obtained by projecting 2D

log-chromaticities in the “correct” direction.

Main Idea and Assumptions

We start by reviewing here the two main assumptions made in [FH01] that are necessary

for the existence of an invariant image: the lights present in the image can be modelled

by Planck’s black-body radiators law and the camera sensors are narrow-band.

A Planckian illuminator is a light source that behaves in accordance with Planck’s

law of black-body radiators [WS82]. The law states that a perfect spherical radiator,

when heated at a temperature T emits electromagnetic radiations at specific wave-

lengths. Examples of -approximate- Planckian light sources include the human body

(emission peak in the infrared part of the spectrum), light bulbs (orange/red), the Sun

(yellow/white) and the sky (blue). The Spectral Power Density of some Planckian illu-

minants can be seen in Fig. 2.5 along with their correlated colour temperature. Planck’s

formula of black-body radiation is:

E(λ, T ) = 2πhc2λ−5
(
e−

hc
kλT − 1

)
(2.25)

Where λ is the wavelength, T the correlated temperature in Kelvin, h is Planck constant,

c the speed of light and k is Boltzmann constant.

For typical lights, one can specify illuminants SPDs using Wien’s approximation of

Planck’s law:

E(λ, T ) = Ik1λ
−5e−

k2
Tλ (2.26)

where k1 and k2 are constants, I is the overall intensity of the light and T is the temper-
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ature of the black-body.

Figure 2.5: Normalized Spectral Power Densities of some Planckian Illuminants

If we allow all our illuminants to be modelled as such, we can substitute equation

(2.26) in (2.1). This gives:

ρk =

∫
ω

Ik1λ
−5e−

k2
TλS(λ)Qk(λ)dλ (2.27)

We now assume that the camera sensors behave like Dirac delta functions, i.e., they

have a non-null response at a single wavelength, λk (see Fig. 2.6 for an illustration),

and can then rewrite the camera sensitivities as:

Qk(λ) = qkδ(λ− λk) (2.28)

where λk is the only wavelength at which Qk has a non-null response.
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Figure 2.6: Sony DXC-930 Camera sensors (Left); Idealized Dirac sensors (right)

Using (2.28) in (2.27), we obtain:

ρk = Ik1λ
−5e
− k2
Tλk S(λk)qk (2.29)

Let us transform the RGB sensor responses into a 2D chromaticity vector c, with c1 = R
G

and c2 = B
G

.

Then, by substituting (2.29) in the chromaticities formation, we have:

c1,2 =
λ−5e

− k2
TλR,B S(λR,B)qR,B

λ−5e
− k2
TλG S(λG)qG

(2.30)

where we observe that the ci do not depend on intensity and shading information. We

now take the logarithms of (2.30) to obtain:

log(c1,2) = log(
S(λR,B)

S(λG)
)+log(

λ−5
R,BqR,B

λ−5
G qG

)+k2(
1

λG
− 1

λR,B
)

1

T
(2.31)

We see from this equation that using log chromaticities can provide us with images that
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are independent of illumination when the Plankian and Dirac assumptions are used.

Equation (2.31) effectively shows that, for the same surface under various Planckian

illuminants, its chromaticities fall on a line where, in log-chromaticity space, move-

ment due to illumination is made along the slope ( 1
λj
− 1

λk
). By projecting those log-

chromaticity values on a direction perpendicular to the illumination slope gives a 1D

image that depends on reflectances only. An illustration of the invariant image forma-

tion process is shown in Fig. 2.7.

Figure 2.7: Left: a Macbeth colour chart, middle: Log-chromaticities of 6 patches under
14 different Planckian lights; the variation due to the illumination lies on a line. Right:
a schematic projection of the chromaticities along the invariant direction that results in an
invariant 1D image.

We note that, to find the invariant direction (the projecting direction), a camera

calibration step is required. The direction is found by calculating the chromaticities of

known surfaces across different lights e.g., by imaging a reference chart in a light booth.

While the result of the invariant image process, shown in Fig. 2.8, is indeed shadow-

free and can be used “as is” in some applications [FH01], do the assumptions of Dirac

sensors and Planckian lights hold for real images?

While Planck’s law models incandescent and natural lights well, fluorescent lights

are generally characterized by highly localized emission spikes and are therefore not

accurately described by their correlated colour temperature. It has however been shown

in [MO01] and [Lu06] that most typical illuminants -including daylights and artificial

lights- fall very close to the planckian locus, i.e., the Planckian assumption leads to an

approximation of the light but that approximation is still good enough to obtain invariant
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Figure 2.8: Original image and the 1D invariant image obtained after projection.

images.

Regarding the use of Dirac-type sensors: as shown in Fig. 2.6, actual camera sen-

sors are not delta functions. However, a comparison of various camera sensors done

in [Lu06] showed that, in practice, most sensors are narrow-band enough so that the

log-chromaticities will form straight lines. If a given camera has really broad sensors,

they can be sharpened -made to behave as if they were narrow band- using the method

presented in [FDF94].

Entropy minimization

To remove the need for calibration, and thus permit the obtention of invariant images

using an unknown camera, an extension to the invariant image framework has been

proposed in [FDL04]. The key insight is that if, in an ideal case, chromaticities of

reflectances under different illuminants are represented by straight lines, then projecting

them on the correct direction -the perpendicular to the invariant lines- will minimize the

entropy of the 1D projection. To this effect, one can form the 2D log chromaticities of

the image and then project this data along all possible projection angles. The direction

that minimizes the entropy of the 1D projection is then considered to be the correct one

(Fig. 2.9 illustrates this idea).
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Figure 2.9: the original image; the plot representing the entropy of the 1D projection at every
angle; the 1D invariant image resulting from the projection in the min-entropy direction

It has been shown in [FDL04] that this simple method was adequate to recover

good invariant images without requiring camera calibration. This work was extended in

[Lu06] where quadratic entropy [Ren87] is used and the Fast Gauss Transform applied

to speed up the computations.

2D Invariant Images

In [DFH03], Drew et al. proposed that the 1D, grayscale, invariant image could be

coloured using the original 2D chromaticities of the image.

Let Iinv be the 1D invariant image; a 2D colour illumination invariant image Iinv2 can

be obtained by taking into account both the projection direction and its perpendicular,

thereby allowing a 2D representation.

This 2D representation is however “flat” since all the lighting information from the

image has been removed. One cannot add lighting back on a per-pixel basis, as it would

amount to undoing the invariant properties. A simple scheme proposed in [DFH03]

is to use the brightest 1% of the pixels in the image (which are assumed to be non-

shadow pixels) and use this offset to match the correct chromaticities of these brightest

pixels with the estimated, illumination free, 2D chromaticities. Figure 2.10 shows the

resulting images of this algorithm. As one can see, they are more stable -less noisy-

than their 1D counterparts.
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Figure 2.10: Original image, 1D invariant image, 2D chromaticity invariant image

From invariant images to shadow edges

The 2D chromaticity invariant image can be compared with the original image to locate

the changes in illumination. The idea, proposed in [FDL04], is in essence simple. The

original image contains edges that are due to both reflectance and illumination transi-

tions. The invariant image however contains only information relevant to reflectance

changes. It follows that by comparing those two edge maps one should be able to re-

cover information pertaining to illumination changes only.

The shadow edge detection algorithm proceeds by first segmenting both the original

and 2D invariant image with the Mean-Shift algorithm [CM02] using a small kernel: in

effect smoothing the image. This will result in suppressing features such as noise and

high frequency textures so that fewer spurious edges are detected. Edge maps are then

obtained by using the Canny edge detector [Can86] on both mean-shifted images. A

comparison of those edges yields an edge map that contains only illumination-related

edges. Let I be the mean-shifted image, Iinv2 be the mean-shifted 2D chromaticity

invariant image and Cx,y be the Canny operator along the x or y direction. The images

gradients can then be written as:

‖∇x,yIinv2(x, y)‖ = max
i

(Cx,y[Iinv2i
(x, y)]) (2.32)

‖∇x,yIk(x, y)‖ = Cx,y[Ik(x, y)] (2.33)
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With i = {1, 2}: the 2D chromaticities and k = {1, 2, 3}: the 3D RGB values.

Let qs(x, y) be a Boolean variable: taking the value 1 if the pixel located at (x,y)

belongs to a shadow edge and 0 otherwise. An edge is classified as a shadow edge if its

magnitude is high in the original image and low in the invariant one. A second criterion

is the orientation; if both the original image and the invariant one have a strong edge

magnitude at a given location, but differ in their orientations, the edge will be deemed

to be a shadow edge. The edge detection is therefore defined as:

qs(x, y) =


1 if ‖∇Ii‖ > τ1 and ‖∇Iinv2

‖ < τ2 (2.34a)

1 if |‖∇xIi‖‖∇yIi‖ −
‖∇xIinv2‖
‖∇yIinv2‖ | > τ3 (2.34b)

0 otherwise (2.34c)

This process is illustrated in Fig. 2.11. One can notice that despite the simplicity of

the algorithm, it performs well enough to detect most shadow edges. However, one

can also observe that the shadow edges are approximate and incomplete, which leads to

problems when attempting to remove the shadows.

2.3 Removing Shadows

When more than one illuminant is present in a scene, one often needs to remove the

unwanted illumination in order to use conventional vision techniques. The problem of

shadows is perhaps the most studied because they are the major sources of unwanted

illumination changes, and, the stark contrast they provide within an image makes them

all the more problematic.

Shadow removal in itself has been significantly less studied than shadow detection.

The main reason is that all video-based methods effectively have “built-in” shadow re-

moval. In essence, once a pixel is deemed to belong to a shadow, it can be replaced by its

non-shadow version obtained in another frame. In the field of computer graphics, how-
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Figure 2.11: Edge detection algorithm. Top row: the original image and the 2D invariant
image. Middle row: the detected edges of both the original (left) and invariant (right) images.
Bottom row: the edges deemed to be shadow edges

ever, shadow manipulation -including detection, removal, synthesis and compositing-

has been of interest for some time. In this context, shadow free images can be obtained

by, for example, Reinhard et al. method for transferring colour and lighting from a

source to a target image [RAGS01]; Oh et al. removal of cast shadows on uniformly

textured areas using a texture-illuminance decoupling filter [OCDD01] or Perez et al.

Poisson image editing framework [PGB03] where regions from images having different

lighting conditions can be copied onto the background of another image and rendered

under a uniform lighting field. There are many more computer graphics inspired meth-

ods, however, most of them require user input and often necessitate several images to

be used: a source image and a target image where the compositing will take place.
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In this thesis, we will take as a starting point the method of Finlayson et al. [FHD02]

that removes shadows using a 2-dimensional integration framework. Shadow removal

pre-supposes that shadows have been detected beforehand and that a mask is available,

either as shadow edges or as a labelling that marks the membership of a pixel as either

shadow or non-shadow.

Shadow Removal with 2D Integration

Let I denote the log of an image. Its gradient,∇I is

∇I = (
∂I

∂x
,
∂I

∂y
) (2.35)

Denote the location of the shadow edges, e.g., obtained using the method set forth in the

previous section, by S. The derivatives belonging to S can then be thresholded using a

function T (∇I) such that

T (∇I) =

{
0, if |∇I| ∈ S (2.36a)

∇I, otherwise (2.36b)

How can I be recovered from T (∇I)? This is not an easy question to answer since a

gradient image is composed of two numbers per pixel but the reintegrated image only

has a single number per pixel. Besides, a 2D function can be reintegrated only if the

gradient field is conservative [FC88], i.e., ∂I
∂x∂y

= ∂I
∂y∂x

for all points in the image (a

condition that, in essence, tells us that the 2 derivatives do not provide independent

information). Thresholding the edges implies that this condition is usually not met and

one therefore has to reintegrate in a least squares sense [Sta79], [FC88]. Effectively,

this results in solving a Poisson equation of the form

∇2I = div(T (∇I)) (2.37)
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Where ∇2 is the Laplacian operator ∇2I = ∂2I
∂x2 + ∂2I

∂y2
and div(T (∇I)) = ∂(T (∇I))x

∂x
+

∂(T (∇I))y
∂y

Provided that the gradient field is integrable, Blake showed in [Bla85] that the log of

lightness can be recovered from the log of the intensity by inverting the Laplacian of the

image if correct boundary conditions are used. In practice, the conditions one assumes

are either Dirichelet: the boundary of the image is known, Neumann: the derivatives at

the image boundary are known constraints or homogeneous Neumann: the directional

derivatives at the boundary are known to be zero. Homogeneous Neumann conditions

are used in [FDL04], for they were shown to yield higher quality images than either

Dirichelet or Neumann.

Subject to these constraints we can invert the Poisson equation in (2.37) using stan-

dard techniques (e.g., by using Fourier or Multigrid [HE81] methods). The derivatives

of the reintegrated image found using this method are as close as possible to the thresh-

olded derivatives of the original image in a least square sense. While minimized, the

derivatives errors can however be spread over the entire image, resulting in global arti-

facts.

Other 2D methods for enforcing integrability have recently been introduced and

have been shown to perform better than simply solving a Poisson equation. Petrovic

et al. [PCF+01] use belief propagation in graphical networks to enforce integrability

in photometric stereo and shape from shading problems. While their method results in

fewer artifacts than Poisson solving, integration errors are still, necessarily, propagated

throughout the image. A different approach to integrability has been developed by

Agrawal et al. in [ACR05] where they exploit the information contained in the curl -the

non integrable part of the gradient field- in order to minimize integration errors. Their

method, however, requires boundary edges to be all of the same type -shadow or non

shadow in our case-, a condition not necessarily met. Their method is also deterministic:

if the integration incurs errors, they cannot be prevented.
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Figure 2.12 illustrates the shadow-free images that are obtained with the Poisson

reintegration method. The shadow boundaries themselves are inpainted using a simple

diffusion-based process. This is necessary for better visual results, as image derivatives

at the shadow boundary are set to 0 they would look constant and would stand out in

the reintegrated image.

Figure 2.12: 2-D Shadow removal. The original image (left), and the shadow free image
resulting from Poisson integration (right).

A problem to note, that we will review in detail in Chapter 5, is that a hidden as-

sumption is made in this, and other 2D integration algorithms. Since shadow edges are

thresholded, reintegrating the whole image will, independently of the way integrabil-

ity is enforced, result in assuming that there are no coincident reflectance/illumination

changes. Such occurrences are, however, not uncommon and will significantly decrease

the quality of the recovered shadow-free images.



Chapter 3

Chromagenic Illuminant Estimation

In this chapter we look at a new algorithm for illuminant estimation. We begin by

reviewing the concept of chromagenic colour constancy, first introduced by Finlayson

et al. in [FM05] and [FHM05b] and look at parameters known to affect its performance

[FHM05a].

We show that the basic formulation of the chromagenic algorithm has inherent

weaknesses: a need for perfectly registered images and occasional large errors in il-

luminant estimation. Our first contribution is to analyze the algorithm performance

with respect to the reflectances present in a scene and demonstrate that fairly bright and

desaturated reflectances (e.g., achromatic and pastel colours) provide significantly bet-

ter illuminant estimation. Put in another way: if the scene contains bright or achromatic

colours we do not expect large errors.

This analysis leads to the bright-chromagenic algorithm. We show that it not only

remedies the large error problem but that we can also remove the image registration

constraint. Experiments performed on a variety of synthetic and real data show that

the newly designed bright-chromagenic algorithm significantly -in a strict statistical

sense- outperforms current illuminant estimation methods, including those having a

substantially higher complexity.

37
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3.1 The Chromagenic Algorithm

Chromagenic colour constancy is performed using two images of the same scene: a

normal image and one where a coloured filter is placed in front of the camera. The

relationship between these two images is then used to estimate the scene illuminant.

The idea of using coloured filters to improve vision tasks is not new. In optome-

try, chromagen lenses are used to subjectively improve the quality of colour vision for

colour-blind observers [Hod98] and special coloured filters are also used to improve the

reading speed of some dyslexic patients [Wil03]. The idea of using two images of a

scene to facilitate some tasks is also common in computer vision. In stereo, two pic-

tures of a scene are taken in order to recover the three dimensional position of objects in

the scene. In photometric vision, polarizing filters can be used to remove specular high-

lights [LL97]. In the case of colour constancy, pairs of images taken with and without

flash can be used to estimate the original scene illuminant [DXW01, PSA+04, LD06].

The chromagenic illuminant estimation algorithm proceeds as follows: Let S(λ) be

the descriptor of surface reflectances,E(λ) the scene illuminant SPD,Qk(λ) the camera

sensitivities (we consider here trichromatic cameras, so k = {R,G,B}) and F (λ) be

the transmittance of the colour filter placed in front of the camera.

The sensor responses of the unfiltered, ρ, and filtered, ρF , image can be written as:

ρk =

∫
ω

E(λ)S(λ)Qk(λ)dλ (3.1)

ρFk =

∫
ω

E(λ)S(λ)F (λ)Qk(λ)dλ (3.2)

thus, for each scene we recover six responses per pixel that form the input to the illumi-

nant estimation problem. For the purposes of this work, we set out to recover ρ
E

: the

RGB of a white surface under the scene illuminant E.

Let us first consider the equations of filtered and unfiltered image formation (3.1)

and (3.2). We can approximate the filtered image by posing a second illuminant, EF (λ)
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so that it is equivalent to putting the filter F (λ) in front of the light source E(λ), i.e.,

EF (λ) = F (λ)E(λ). We can therefore think of ρ and ρF as sensor responses of a single

surface under two different illuminants. It has been shown in [MW86] and [DI93] that

when the same surfaces are viewed under two lights, the corresponding RGBs can, to a

good approximation, be related by a linear transform and so we use a 3 × 3 matrix to

relate the RGBs captured with and without the coloured filter. We can then write:

ρF = T FE ρ (3.3)

where T FE is a 3 × 3 linear transform that depends on both the chromagenic filter and

the scene illuminant. Equation (3.3) implies that, given the chromagenic filter and sen-

sor responses under a known illuminant, we can predict the filtered responses. In the

problem of illuminant estimation, however, we know both the filtered and unfiltered

responses but not the illuminant. Moreover, the task of finding the illuminant corre-

sponds to finding T FE . If we know all possible illuminants a priori we can, for a given

filter, determine the transforms T FE for every illuminant. We can then estimate which

of these pre-computed transforms best fits the pair of filtered-unfiltered responses and

thus, determine the illuminant.

Before outlining the actual algorithm, it is worth pointing out two cases where,

depending on the filter or the sensor sensitivities, chromagenic colour constancy is not

possible: if the filter has a neutral density or if the camera sensors behave like Dirac

delta functions.

If the chosen filter has a neutral density, i.e., its transmittance does not vary across

the spectrum, the relationship between filtered and unfiltered RGBs will be a constant

scaling (the same for all lights). If we write:

F (λ) = α, ∀λ (3.4)
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where α is a constant value, then

ρF = αρ , ∀S,E (3.5)

It follows that the 6D responses will in fact span only three dimensions and thus solving

for colour constancy is impossible.

If we suppose Dirac-type sensors where the non-null response of the kth sensor is

at the wavelength λk, we can rewrite equations (3.1) and (3.2) as:

ρk = E(λk)S(λk)Qk(λk) (3.6)

ρFk = E(λk)S(λk)F (λk)Qk(λk) (3.7)

It follows that ρFk = F (λk)ρk and that the responses are, again, three dimensional and

their relation depends neither on the reflectances nor on the scene illuminant. Addition-

ally, while not as limiting as the neutral density case, using a rank-deficient filter -e.g.,

a pure red filter- will deliver poor constancy since significant information is lost -in this

case the relationship between the blue pixels.

Barring the cases outlined above, the transforms can be pre-computed by choosing

a set of n typical scene illuminants: Ei(λ), i = 1, . . . , n and a set of m surface re-

flectances: Sj(λ), j = 1, . . . ,m representative of the real world. For each illuminant i,

we create a 3×m matrix Qi whose jth column contains the sensor response of the jth

surface illuminated by the ith illuminant. We also createQFi , which contains the equiv-

alent filtered responses. For each illuminant, we can then define the transform matrix

as:

Ti = QFi Q+
i (3.8)

where + denotes the Moore-Penrose pseudo-inverse operator, Q+ = (QTQ)−1QT. Ti
can then be described as the transform that best maps, in a least square sense, unfil-
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tered to filtered responses under illuminant i. Because it is a least squares fit, Ti will

not, in practice, map the responses without errors. What matters, however, is that the

error committed when mapping responses under illuminant i is the smallest when the

corresponding transform Ti is used.

Once the n transforms have been pre-computed, the illuminant estimation proceeds

as follows: let Q and QF denote the 3 × m matrices of unfiltered and filtered RGBs

of arbitrary reflectances under an unknown light. For each plausible illuminant we

calculate the fitting error, ei, as:

ei = ‖TiQ−QF‖, i = 1, . . . , n (3.9)

under the assumption that Ei(λ) is the actual scene illuminant. We then choose the

transform that minimizes the error and surmise that it corresponds to the scene illumi-

nant. Our estimated illuminant is Eest(λ) where

est = arg min
i

(ei) i = 1, · · · , n (3.10)

It was shown in [FHM05b] that if both reflectances and illuminants can be exactly

described by three basis functions each, i.e., they are three dimensional, then the chro-

magenic algorithm delivers perfect illuminant estimation. In natural scenes, however,

these dimensions are generally higher [PJ89,JMW64] and so there are estimation errors.

Indeed, while in general the chromagenic algorithm can deliver good colour con-

stancy, it has two major weaknesses: the first one is that, though good on average, the

performance can, on occasion, be (very) poor. The second problem comes from equa-

tion (3.9) where we see that the fitting error for each candidate illuminant is evaluated

on a per-pixel basis. This implies that, for the algorithm to deliver an optimal perfor-

mance, the two images have to be perfectly registered, a demanding requirement when

images are taken outside of the lab. Registration methods can be of some help but since
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we are looking for an exact registration at pixel-level, they may not be sufficient.

3.2 The Choice of Filter and Sensors

Two important aspects of the chromagenic algorithm are the filter choice and the camera

sensors, for they can greatly influence the performance of the algorithm and are the only

“controllable” parameters in the image formation process.

Looking at equation (3.9), we see that in order to maximize the performance of the

chromagenic algorithms, two properties have to be satisfied:

1. The transforms Ti should be as different as possible from each other (maximizing

the discriminative power of the illuminant).

2. A transform Ti should map unfiltered responses under illuminant i to filtered

responses with as small an error as possible (minimizing the uncertainty).

3.2.1 Optimal Filters

In general, given a filter set -in our case the filter set is a selection of 53 different Kodak

Wratten filters [Kod69]- one wants, for chromagenic purposes, to select one that is non-

cutoff and whose transmittance varies across the visible spectrum. Among the then

possible filters, it was shown in [FHM05b] that, in practice, they all deliver a good level

of performance. Finlayson et al. in [FHM05a] have however reported that designing

a filter specifically for chromagenic processing gave significantly better results than

simply picking an existing Wratten filter.

The filter design can be analyzed either in closed-form or by sampling. The closed-

form method formulates the two desirable properties for Ti in an optimization problem.

Specifically, this is done by maximizing the inter-transform variance (property 1) while

minimizing the fitting error (property 2). They have shown that the optimal filters are
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solution to an eigenvector problem. The closed-form approach however does not guar-

antee to minimize illuminant estimation error.

Optimal filters can otherwise be obtained by sampling the space of possible filters.

The performance of the filters is defined to be in relation to the average illuminant

estimation error obtained on a representative set of images. The average has to be used

because the performance of a given filter will be image and illuminant dependent (e.g., if

both the surfaces and the illuminant are red, a reddish filter will yield better results than a

blueish one). Let us assume that the filter transmittance F (λ) is a linear combination of

three basis functions that can be found by performing a principal component analysis on

the transmittance of all Wratten filters. To find all filters one then needs to investigate all

possible weight combinations for the filter basis: a computationally intensive problem.

In practice though, the exhaustive search for the weights can be restricted to a finite

set of uniformly sampled points on the unit sphere (5000 such points were used in

[FHM05a]).

3.2.2 Optimal Sensors

Arguably, one might also design sensors for chromagenic illuminant estimation. But,

pragmatically, when choosing sensors one has to consider aspects of image quality such

as colour rendering and image noise that strongly depend on the sensors. So, though

optimal sensors for chromagenic illuminant estimation were discussed in [FHM05a],

we will work with conventional camera sensors.

3.3 The Bright-Chromagenic Algorithm

We saw in the previous section that the average performance of the chromagenic al-

gorithm can be enhanced by choosing specific filters and sensor sensitivities. These

improvements do not, however, address the main limitations of the chromagenic algo-
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rithm: potential large estimation errors and the need for perfectly registered images.

We propose here a modification of the chromagenic algorithm that has three out-

comes: it improves the average illuminant estimation performance, it reduces the max-

imal errors observed when the estimation is erroneous and, more importantly, it allows

the algorithm to be used on unregistered images.

Let us first look back at equations (3.1) and (3.2) where we see that the sensor

responses depend on the scene illuminant, the chromagenic filter, the sensor sensitivities

and the surface reflectances. It follows that the linear transforms Ti also depend -to

some degree- on those factors. Among them, the illuminant is what we aim to recover

so it has to remain a variable; achievable improvements due to choosing both the filter

and the sensors sensitivities have been explored in [FHM05a]. We therefore set out to

explore the only unknown that remain in the equation: the scene reflectances.

Building a model based on reflectances can be difficult for a couple of reasons.

The main problem is that we have, in general, no control as to which reflectances are

present in a scene. This uncertainty is the reason why simple estimation methods such

as gray-world and Max-RGB are unreliable (if every scene contained a white patch,

Max-RGB would be very accurate). Another issue is linked to what is the input of

most illuminant estimation algorithms: RGBs. Indeed, both the training and testing

steps of the chromagenic algorithm are RGBs, which are composed of all of the image

formation process parameters.

3.3.1 Reflectances Analysis

For the chromagenic algorithm to work well, the transforms Ti that map RGBs to their

filtered counterparts should depend strongly on the illuminant. Here, we want to quan-

tify the variance of the transforms when the illuminant changes and compare it to the

variance observed when the illuminant is fixed but the reflectances vary.

To perform this assessment, we follow the methodology of [FHM05a] and [FHM05b]
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in our choice of parameters. The illuminants belong to a set of 87 measured illuminants

Spectral Power Distributions (SPD) that include all common light sources. These SPDs

are sampled every 10nm, from 380nm to 780nm. More details about the set can be

found here [BCF02] and the set itself can be found at [Bar02]. For surface reflectances,

we use a synthesized set of 1995 Munsell surface reflectances [Uni89]. The reflectances

are also sampled every 10nm from 380nm to 780nm, more details about that set can be

found in [PJ89].

Concerning the choice of camera sensitivities and filter, we could use the results

of [FHM05a] to maximize the performance but since they (for now) just exist on paper

and that we want to have a framework as unified as possible over all our experiments,

we decide to use the sensors of a Sony DXC-930 camera (as in [BCF02] and [HF06])

and a Wratten 81B filter (a yellowish filter). Both the filter and the sensor sensitivities

are shown in Fig. 3.1.

Figure 3.1: Left: The Sony DXC-930 sensitivities. Right: The transmittance of the 81B
Wratten filter used in the experiments.

We start by creating the transforms Ti according to equation (3.8) by imaging all

the 1995 reflectances under the 87 illuminants, we thus have 87 distinct transforms. To

assess the variability of the Ti, i.e., how differently they map the reflectances depending
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on the illuminant, we calculate the inter-transform variance σ2
E:

σ2
E =

1

87

87∑
i=1

(ti − µT )T(ti − µT ) (3.11)

where ti is the 9×1 vector representation of the 3×3 transform Ti and µ
T

is the average

of all ti. Equation (3.11) quantifies the transforms variation across illuminants: the

larger the variance, the better the algorithm will perform. However, we must compare

(3.11) with the variation in transforms due to choosing different reflectance sets.

Calculating the equivalent variance generated by different reflectances is somewhat

more complicated. Let us denote by S the entire reflectance set; we randomly partition

S into N subsets of equal size, denoted sj such that:

N⋃
j=1

sj = S (3.12)

and

sj ∩ sk = ∅, ∀j, k ∈ [1, N ], j 6= k (3.13)

We denote by T sji the transform obtained with equation (3.8) when the subset sj is

imaged under illuminant i. The inter-transform variance for reflectances σ2
S is calculated

as:

σ2
S =

1

87

87∑
i=1

σ2
Si

(3.14)

where:

σ2
Si

=
1

N

N∑
j=1

(t
sj
i − µSiT )T(t

sj
i − µSiT ) (3.15)

In this formulation, µSi
T

is the mean of all tsji , i.e., the mean of all subset-induced trans-

forms under illuminant i.

An important aspect of this calculation is how to partition S. On one hand, we want



CHAPTER 3. CHROMAGENIC ILLUMINANT ESTIMATION 47

enough subsets for the test to be meaningful, but we also know that the chromagenic

algorithm is three dimensional. While most daylight illuminants are at least 3D, this is

not necessarily the case with reflectances, so, a combination of reflectances is required.

To balance these imperatives, we choose to use subsets of 16 reflectances -a plausible

number for many real scenes. This, however, yields C1995
16 possibilities to select our

subsets, a daunting number. Instead of seeking every possible partition, we partition the

1995 reflectances in subsets of 16 reflectances 1000 different times, thus averaging the

results over 1000 observations of σ2
S .

The results of this experiment are: σ2
E = 0.0306 and σ2

S = 0.0753. The variation of

σ2
S with respect to the number of reflectances used is shown in Fig. 3.2.

Figure 3.2: Inter-transform variance using a synthetic test with multiple reflectances from
the Munsell set under a given illuminant. The values shown are the average over 1000 tests.

Based on these results we can conclude that the linear transforms used in the chro-

magenic algorithm vary significantly with the reflectances used in training. It follows

that there is also a significant variability in testing. Thus, a subset of reflectances that

are better suited to illuminant estimation should also exist, and the performance will

increase the more of these reflectances are present in the scene.
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3.3.2 Modelling In and Outliers

We know that the estimation accuracy will partly depend on the set of tested reflectances

and we would like to model that dependency. Because there is a multitude of combina-

tions of illuminants and reflectances, we will analyze the performance of the algorithm

on single reflectance scenes (where good estimates can still be obtained [FHM05b]).

The transforms are calculated as before, creating 87 of them. The test set for this ex-

periment consists of all possible single reflectance scenes under 287 illuminants, there-

fore creating ∼570,000 pairs of filtered and unfiltered RGBs. This larger illuminant

set used in testing covers the same gamut as the 87 training lights; the chromagenic

algorithm will select one of the 87 lights as the scene illuminant.

Figure 3.3 shows the angular errors for all the 570,000 scenes. The angular errors

range from 0 to 42 degrees, with a mean of 9.3 and a median of 5. For this particular

dataset, our experiments indicate that an angular error of 3 degrees or less is necessary

for acceptable colour cast removal. From these results, we see that we need to reduce

both the overall and, especially, the maximum errors -an angular error of 42 degrees is

equivalent to mistaking green for yellow.

To understand what is happening, we look at the RGBs that comprise the top and

bottom 20% of performance. We plot the brightness and saturation of these RGBs in

Fig. 3.4a for the highest errors and Fig. 3.4b for the lowest ones. It is clear that low

errors correlate with fairly desaturated RGBs (pastel tones and achromatic) whereas

high errors correlate with dark and saturated RGBs. More interesting perhaps is the fact

that bright achromatic RGBs are not at all present amongst the RGBs linked to high

errors. This finding is corroborated by the result of Fig. 3.5 where we plot elliptical

summaries for the high and low error sets. The ellipses, each of which accounts for 90%

of its respective data, are mostly disjoint. Assuming a uniform distribution of colours

in an image, we propose that it is easy to find RGBs and their filtered counterparts that

belong to this preferred set. We simply look for a small percentage of the brightest
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Figure 3.3: Sorted errors for the single reflectance test. The mean error value is 9.3 degrees
and the median 5 degrees.

Figure 3.4: (a) Brightness-Saturation scatter plot of the 20% worst performing RGBs. (b)
Brightness-Saturation scatter plot of the 20% best performing

image regions. We propose that the basic chromagenic algorithm should be modified

so that only bright image pixels are considered.

The Bright-Chromagenic algorithm is defined as:

——————————

Preprocessing: For a database of m lights Ei(λ) and n surfaces Sj(λ) calculate Ti ≈
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Figure 3.5: Equi-variance ellipses of both sets, each containing 90% of their respective data,
showing they are mostly disjoint.

QFi Q+
i where Qi and QFi represent the matrices of unfiltered and filtered sensor re-

sponses to the n surfaces under the ith light and + denotes a pseudo-type-inverse

Operation: Given P surfaces in an image we have 3 × P matrices Q and QF . From

these matrices we choose the r% brightest pixels giving the matrices Q and QF , where

the brightest pixels are defined to be the ones with the largestR2 +G2 +B2 value. Then

the estimate of the scene illuminant is ρ
est

where

est = arg min
i

(erri) (i = 1, 2, · · · ,m)

and

erri = ||TiQ−QF ||

——————————

This formulation is robust since it does not make assumptions about which re-

flectances might or might not be present in the scene, i.e., if there are no bright re-

flectances in the image, the bright-chromagenic algorithm will still have an equivalent
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performance to the original chromagenic algorithm.

Because we “exclude” -select them only if no other are available- the worst per-

forming RGBs, we expect the bright chromagenic algorithm to significantly reduce the

worst errors.

We also make the following observation: if we assume that scenes admit a diversity

of reflectances, then it follows that -if the filter does not vary too drastically across the

spectrum- the brightest unfiltered RGBs will most likely be mapped on to the brightest

filtered RGBs. If we are relatively conservative with the number of bright pixels we use

to estimate the illuminant (we typically use the top 1-3% of the brightest pixels), the

bright-chromagenic algorithm will then be able to estimate illuminants even when the

images are not registered. Both these properties are verified in our experiments.

Because we are proposing to look only at bright image responses, the transform

matrices might be calculated using a least-squares estimator where bright values are

weighted more strongly. This is what we mean by a pseudo-type-inverse. However,

in our subsequent experiments, we have not found any strong benefit from building

transforms using only the bright image RGBs. So, for the experiments presented in the

next section we use the conventional (unweighted) Moore-Penrose inverse.

3.4 Experiments

In this section, we analyze the performance of the bright-chromagenic algorithm, and

compare it to various other illuminant estimation methods on four datasets of increasing

difficulty, ranging from perfect synthetic data to real images taken with a prosumer

digital camera whose sensitivities are unknown.

We evaluate algorithms according to the framework of Hordley and Finlayson [HF06]

where it was shown that, if one wants to summarize the performance of an illuminant

estimation algorithm over a dataset, one should use the median angular error instead
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of the mean or Root Mean Square error. The use of a median statistic also permits to

assess if the difference of performance between two algorithms is statistically signifi-

cant at chosen confidence level. That significance is given by using the Wilcoxon sign

test [HT01] at a 95% confidence level.

To simplify the writing, we will use the following notations: SM is the set of 1995

synthetised Munsell reflectances of [Uni89], E87 and E287 are the sets of respectively

87 and 287 illuminants from [Bar02].

3.4.1 Synthetic Reflectances and Lights

The test on synthetic images is run according to the testing protocol proposed by Barnard

et al. in [BCF02]:

Training: The linear transforms are created by imaging the whole of SM under E87,

thus generating 87 transforms. We use the Sony-DXC camera sensitivities and the 81B

Wratten filter, whose transmittance is shown in Fig. 3.1.

Testing: We generate 1000 images containing n different reflectances,

n = {1, 2, 4, 8, 16, 32}, randomly taken from SM . We then illuminate these images

with one light taken at random from E287; sample filtered and unfiltered images are

shown in Fig. 3.6. We estimate the illuminant of each image using both the bright-

chromagenic and the original chromagenic algorithms. For images where n > 4,

the bright-chromagenic version estimates the illuminant based on the four brightest

reflectances only.

The results are displayed in Table 3.1 where the last column indicates the ranking

of the considered algorithms, taking in to account the results of Wilcoxon’s sign test.

An algorithm is ranked better than another if its median is lower and if the difference is

statistically significant at the 95% level. If the sign test is inconclusive, the algorithms

will be ranked equally.

The results show that the bright-chromagenic algorithm performs significantly bet-
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Figure 3.6: Sample pairs of synthetic images with 16 reflectances under random illuminants
from E287

] surfaces 1 2 4 8 16 32 rank
Chromagenic 6 5.2 4.5 3.5 3 2.2 2

Max RGB 9.7 7.9 6.1 4 2.9 2.6 6
Grey World 9.1 7.3 5.8 4.9 4.8 4.8 8

Database GW 9.5 6.7 4.8 3.4 2.8 2.5 4
LP Gamut Mapping 9.6 6.7 4.8 3.3 2.7 2.4 4

Neural Network 8.8 7.1 5 4 2.9 2.6 6
Colour by Corr. 6.9 5 3.5 3.1 2.4 2.3 2

Bright-Chromagenic 6 5.2 4.1 2.8 2.1 0.9 1

Table 3.1: Average median angular error for 1000 tests at each complexity level. The last
column is the rank, based on the 32 surfaces test, according to the Wilcoxon sign test with a
confidence level of 95%

ter than all other methods. We also see that the more complex methods form a group

that is, in turn, significantly better than the simpler scene assumptions algorithms.

An additional result, shown in Fig. 3.7, is the reduction in maximal error achieved

by the bright chromagenic algorithm. This experiment validates our selection of the

bright RGBs to reduce the high max errors observed with the original chromagenic

algorithm.
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Figure 3.7: Comparison of the max angular error between the original and the bright chro-
magenic algorithm, one can see the significant reduction achieved by selecting only the
brightest RGBs.

3.4.2 Real Reflectances and Synthetic Lights

In this second test, we use spectral outdoor reflectance images measured -as opposed to

synthesized- by Nascimento et al. [NFF02]. Figure 3.8 shows the eight images that will

be used (the images can be obtained at [Uni02]).

Note these images measure only reflectances. To generate RGB images, we use the

scene lights and camera sensors as in the previous experiment.

Training: We leave here the training step unchanged from the previous experiment,

i.e., the transforms are created on a different reflectance set than the one tested.

Testing: We start by creating images using the eight reflectance images illuminated

with E287 to to generate 2,296 “half-synthetic” images. We then proceed to test our al-

gorithm on each of those images, selecting the top 3% of the brightest pixels to estimate

the illuminant.

Results from this dataset, Table 3.2 ,exhibit the same trend than in the all synthetic

experiment, i.e., the bright-chromagenic significantly outperforms other methods.
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Figure 3.8: The eight outdoor reflectance images measured by Nascimento et al. [NFF02]
that compose the second test.

Algorithm Median Chrom. Max-RGB GW Bright-Chrom
Chromagenic 6.7 = + + -

Max RGB 8.7 - = + -
Grey World 13 - - = -

Bright Chromagenic 3.5 + + + =

Table 3.2: Summary of the results on the Nascimento images. This table displays the mean
angular error values over the 2,296 images. A ’+’ in a row indicate that an algorithm per-
forms significantly better (at 95% confidence level) than the one in the corresponding column,
’-’ and ’=’ are for when an algorithm performs worse or if there is no significant difference.

3.4.3 SFU dataset

The next set we evaluate our algorithm on is the non-specular Simon Fraser University

(SFU) dataset, which is described in detail in [BCF02].

The data set consists of 31 colourful objects captured under 11 illuminants. Fig-

ures 3.9 and 3.10 show some objects under one light and one object under all the

available lights respectively. In the second case it is apparent that the images are not

registered (in fact, the objects were rotated in between two pictures when creating the

dataset).
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Figure 3.9: Some objects of the SFU dataset under one illuminant.

This experiment differs from the previous ones in the sense that here we are di-

rectly provided with the RGBs of the images instead of reflectances. This, plus the

non-registration of the image will provide a difficult test for the bright-chromagenic al-

gorithm. The SFU dataset has been used in several illuminant estimation comparisons

because ground truth is provided in addition to the images themselves. That is, both the

SPD of the 11 illuminants (they are actually a subset ofE87) and the camera sensitivities

are given (the camera used to take the images is the Sony-DXC 930 whose sensitivities

are shown in Fig. 3.1 and that we used in the previous tests).
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Figure 3.10: One object from the SFU dataset under the 11 illuminants. Note that the lights
in the second row are the same as the ones of the first row with a bluish filter placed in front
of them. One can also see that the images are not registered.

To perform chromagenic illuminant estimation, we require pairs of images taken

with and without a coloured filter. However, if we only have image RGBs at our disposal

we cannot retroactively model the filtered responses. As it turns out, 8 out of the 11

illuminants present in the set come in pairs: the original lamp lights and those lights

filtered with a blue filter (the lights and their filtered counterparts are shown in the first

2 rows of figure 3.10). Since the actual illuminant SPDs are known, we can derive the

filter that was used -we do not actually know what it is- by dividing the spectra of the

lights by the filtered ones. The eight -two pairs of four- lights that are considered and

the derived filter are shown in Fig. 3.11.

Training: The transforms Ti are obtained by imaging the synthetic reflectances SM

under the illuminants ofE87. As filter, we use the one derived from the eight illuminants

shown in Fig. 3.11; the camera sensitivities are the same as in previous experiments.

Testing: To test the algorithm, we estimate the illuminant of all the possible pairs of

images (124 pairs in total) using the top 3% of the brightest pixels in both filtered and
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Figure 3.11: Left: The 8 light sources considered in this experiment. The dashed lines are
spectra of the light sources, while the continuous ones are from the filtered sources. Right:
The Filter derived from the light source data. The maximum transmittance higher than 1 is
due to the camera auto-exposure function. While this is not the data of the physical filter, it
is what the camera “sees” and therefore what we use in training the transforms.

unfiltered images independently. These pixels typically belong to one or two of the

surfaces in the scene (we do not need a white reflectance per se, we simply take the

brightest ones available). Since the images are not registered, we are able to test our

hypothesis that, in general, the brightest pixels in both images come from the same

surfaces, and that the bright-chromagenic algorithm does away with the need for regis-

tration.

The angular errors reported in the first two columns of Table 3.3 show that, despite

its simplicity, the bright chromagenic algorithm outperforms in terms of both mean

and median angular error all other algorithms at the 95% confidence level. The orig-

inal chromagenic algorithm is not shown here since its registration requirement is not

fulfilled.

Perhaps the most remarkable aspect of the bright-chromagenic algorithm is that,

despite modelling the transforms on synthetic data with a filter derived from measure-

ments, it is still able to estimate accurately the illuminants of real, significantly non-

registered images.
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Algorithm Mean Median B-Chr RGB GW DB NN GM CbyC
Bright-Chromagenic 4.8 3.4 = + + + + + +

Max RGB 6.4 4.1 - = + + + = -
Grey World 11.9 9.3 - - = - = - -

Database GW 10 7 - - + = = - -
Neural Network 8.9 7.8 - - = = = - -

LP Gamut Mapping 5.5 3.8 - = + + + - =
Colour by Corr. 6 3.6 - + + + + = =

Table 3.3: Summary of the results on the Simon Fraser dataset. The table shows mean and
median angular error as well as the results of the Wilcoxon sign test at the 95% level.

3.4.4 Real Images

The last, experiment is designed to evaluate the performance of the bright-chromagenic

algorithm in situ. Whereas the previous datasets were obtained in “controlled condi-

tions” (purely synthetic data, partly synthetic data and controlled lighting environment),

we use here a set of real-world images taken with a digital camera whose specifications

are unknown.

Chromagenic Photography:

For the illuminant estimation to be meaningful, we must take a couple of precautions

when capturing the images. The camera we used is a Nikon D70: a prosumer Single

Lens Reflex camera. The camera was setup to capture linear RAW, unprocessed, im-

ages1. To prevent the camera from using a different white balance between filtered and

unfiltered images, all images were captured with the white balance set to “daylight”.

Additional technical aspects to consider are that we want to have image pairs that

are as registered as possible, and also wish to avoid over or under-exposed regions,

which make the relationship between filtered and unfiltered pixels meaningless. To that

effect, the images were captured using a tripod and a remote shutter release (to minimize

registration errors) and the settings of the camera aperture and shutter speed were set to

1In fact, even with RAW settings, the camera and associated software will process the image some-
what; it is however as unprocessed as one can have with a general purpose digital camera.
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“manual” mode where we aimed to capture the entire dynamic range of the image.

For the filter, we used an actual 81B-type Wratten filter. The captured images were

then exported, using Nikon capture, as 16bits/channel linear tiff images.

All images were captured by Dazlong Luang at the University of East Anglia and

we gratefully acknowledge his help and assistance.

The dataset consists of 86 pair of images taken under a variety of indoor and out-

door illuminants. In every scene, we placed a Macbeth colour checker that is used to

accurately determine the color of the prevailing light, thereby providing a ground truth

to assess the accuracy of illuminant estimation algorithms.

From the dataset, we then create separate training and testing sets. The training set

consists of the 24 Macbeth patches present in all the images. The testing set is created

by blacking the colour checker from the images. Images from the original (with the

colour chart) and the testing set are shown in Fig. 3.12.

We note that, despite the precautions taken, the registration between images is not

perfect and some image regions can be over-exposed. Additionally, multiple illumi-

nation is sometimes present in images, which can lead to errors when estimating the

prevailing illuminant.

Preliminary assessment:

Before testing the performance of the algorithm on the images themselves, we want

to find out whether reasonable estimates can be obtained with simple reflectances. To

do so, we perform two simple tests: in the first one, we calculate the Ti on half of the

Macbeth charts and test the algorithm on the 43 other charts (the partition is chosen

randomly). The chromagenic algorithm is tested using the entire chart while the bright

chromagenic is tested on the 5 brightest reflectances. In the second test, we calculate

the Ti based on 16 of the 24 reflectances of the checker (we chose to use the 6 grayscale

and 10 coloured ones selected at random among 18). We estimate the illuminant based

on 4 of the remaining -untrained- reflectances. In the case of the original chromagenic
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Figure 3.12: Real images taken with a Nikon D70 camera. The first row is unfiltered images.
The second row consists of the corresponding filtered images. The last two rows are the
equivalent images in the testing set, where the colour chart has been removed.

algorithm, those 4 are taken at random among the 8 untrained ones. For the bright

chromagenic algorithm, we use the 4 brightest reflectances among them. As these tests

have inherent randomness, each of them is repeated 1000 times and their average is

mentioned here. The first test reports median angular errors of 2.53 and 2.4 (for the

original and bright-chromagenic respectively, the difference is significant). The second

tests yields 4.49 and 4.05 respectively (significant difference as well). These results are

broadly in line with the ones obtained on synthetic data in our first experiment, which

allows us to put the results obtained on our real data in perspective with the other tests

previously performed.

Training: We create 86 linear transforms, using the 24 RGBs of the colour checker

present in each image.
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Algorithm Mean Median B-Chr RGB GW Chromagenic `4

Bright-Chromagenic 7.09 4.15 = + + + +
Max RGB 7.87 7 - = + - +

Grey World 11 10.8 - - = - -
Chromagenic 7.96 5.1 - + + = +

`4 Gray [FT04] 10.3 9.6 - - + - =

Table 3.4: Mean and median angular errors over the 86 real images. The significances are
reported according to the test sign with a confidence level of 95%.

Testing: We estimate the illuminant for both the original and bright-chromagenic (using

the top 3% brightest pixels) algorithms on the 86 pairs of images that have the colour

chart clipped out.

The results are shown in Table 3.4 and illustrate that the most accurate illuminant

estimation is given by the bright-chromagenic algorithm. The results otherwise exhibit

the same behavior as previous experiments.

3.5 Conclusion

A chromagenic illuminant estimation algorithm exploits the relationship between RGBs

captured by a conventional camera and those captured through a coloured filter. Differ-

ent lights induce different relationships and so, the illuminant colour can be estimated

by testing pre-computed relations in situ. While the chromagenic approach can work

well, it occasionally performs poorly. Moreover, typical chromagenic camera embodi-

ments such as a stereo rig or where there are multiple surveillance cameras (a filter can

easily be placed over one camera) do not have pixel registration and this is assumed in

the chromagenic theory.

In this chapter, a detailed error analysis demonstrated that bright pixels in images

lead to smaller chromagenic estimation errors. This led to the bright-chromagenic al-

gorithm, which bases its estimation only on a fixed percentage of the brightest pixels in

the filtered and unfiltered images. Importantly, these pixels are chosen independently
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in each image so there is no need for image registration. Experiments on various sets

of synthetic and real data demonstrate that the bright-chromagenic algorithm delivers a

better illuminant estimation than all other tested algorithms. The performance is espe-

cially promising considering that, if the camera sensitivities are known, the transforms

can be pre-computed on synthetic data even without knowing the content of the test

scenes, such as demonstrated on the SFU test (third experiment).

It was proposed in [FHM05b] that the average performance of the chromagenic

algorithm could be improved by incorporating knowledge about the plausibility of an

illuminant given the colours present in an image. This modified algorithm effectively

combines Gamut Mapping and chromagenic illuminant estimation. It was subsequently

shown that this hybrid algorithm performed better than the original formulation alone.

In our work, while we have tested this constraint and found it to improve our bright-

chromagenic algorithm as well, we opted not to add it. The rationale is that we are

trying to develop a method that has minimal inference and so coupling it with Gamut

Mapping would, in a sense, defeat this purpose.



Chapter 4

Detecting Multiple Illuminants

The presence of multiple illuminants in an image is an obstacle for many computer

vision algorithms. Most illuminant estimation algorithms can also perform poorly when

confronted with this situation, as we have seen in Chapter 3. Scenes where there is

more than one principal light source do however occur in many situations, such as the

presence of shadows or daytime indoor environments.

Common ways to minimize the problems created by multiple lights are to perform

a given task only in regions containing a single light or to remove the non-prevailing

illumination, thereby rendering the entire image under a single illuminant.

Before these methods can be implemented though, it is necessary to first detect the

parts of the image that are predominantly illuminated by spectrally different lights. In

this chapter, we propose two different methods to achieve that aim.

First, we look at Finlayson et al. invariant image method for shadow detection

presented in [FDL04] and reviewed in Chapter 2. We note that while the shadow edges

are mostly accurate, they are not closed (this will introduce artifact in the reintegration)

and they cannot account for shadows of varying strength (such as the ones created when

multiple point light source are present). We propose to remedy these shortcomings by

simple extensions of their framework.

64
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In a different approach, we propose a novel method to detect multiple illuminants

using the chromagenic theory. We constrain the illuminant estimation problem so that

we look for a set of linear transforms where each image region is indexed by one of the

transforms of the set. Results at a pixel-level show that while noisy, this method gives

a good outline of the different regions. By segmenting the image, however, we obtain

illumination masks that are highly faithful to the original scene.

4.1 Completing Invariant-Based Shadow Edges

Looking back at the shadow detection method of [FDL04], we see that shadow edges

are obtained by comparing edge maps from both the original and the invariant image

(this framework is shown in Fig.4.1). Basically, this method will not detect coinciden-

tal material and illuminant change because of its assumption that edges present in the

invariant image are necessarily material edges only.

Figure 4.1: The method to obtain shadow edges according to [FDL04]. While most of the
shadow edges are correctly detected, some edges are mistakenly classified. Also, the edge
map is fragmented.

Having open edges is, however, problematic. Indeed, an algorithm basing its de-

cisions on whether a region is in the shadow or not can make a wrong choice when

confronted with fragmented edges. Moreover, shadow removal algorithms need to have

complete edges when processing difficult scenes; open edges will result in integration

errors that can hinder the performance of the removal procedure (this problem is dis-

cussed in detail in Chapter 5).
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To address this issue, we modify the original formulation by incorporating a post-

processing step that will automatically close the edges based on the mean-shift seg-

mentation of the original image. This does not come at an additional cost since the

mean-shift segmentation is already used in [FDL04] to detect edges in both the invari-

ant and the original image.

In a different approach, we propose to simplify the framework of shadow detection

by removing the step where edges in the invariant image are sought. Instead, we provide

a region-based approach that will ensure the edges are closed (since we now look for

regions) and that also allows to distinguish relative shadow strengths.

4.1.1 Closing Shadow Edges

To close shadow edges, we will use two different edge maps. The first one, IS , is

obtained using the method of [FDL04] and shown in Fig. 4.1 (right). The second map

is the result of segmenting the original image with the meanshift algorithm [CM02]

where default parameters are used (except for the minimum region size which we chose

to be 0.5% of the image size) in order to preserve all shadow edges; let IM be that

image. The workflow of our method is shown in Fig. 4.2.

By construction, IS contains mostly shadow edges but they are generally incomplete

and the map can be “noisy”. IM on the other hand contains most of the image edges,

we will therefore use it to complete the edges of IS . The first step is to prune the noisy

edges of IS: we identify edges in IS (the white pixels) and remove all those that are not

coincidental to an edge in IM , Fig. 4.2d. Then, we look at the relative lengths of the

edges; that is, for each remaining edge in IS , we look at the corresponding edge in IM .

If the length of the edge in IS is less than 10% the length of the one in IM we remove

it as well, Fig. 4.2e. The remaining edges are then completed using IM as a guide by

“stretching” them so that they are equivalent, Fig. 4.2f. In the event where the resulting

edge map is still incomplete, we then look at the closest distance using edges from IM
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Figure 4.2: First row: (a) the original image, (b) the meanshift segmentation IM and (c)
the original shadow edge from [FDL04] IS Second Row: (d) Edges from IS that correspond
to edges in IM (the others have been deleted); (e) Edges from IS that are less than 10% in
length than the corresponding edge in IM . Last row: (f) Extending edges from IS using IM

as a guide. (g) Completing the still open segmentation using the shortest path available in
IM to join the open ends.

to join the open ends, Fig. 4.2g.
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Figure 4.3: Left and middle column: Images and their shadow edges from [FDL04]. Right
column: the complete edges obtained with our method.

4.1.2 Region-Based Approach

We propose here a method that simplifies the framework of shadow detection, that en-

sure all shadow edges will be closed, and that provides a shadow mask that takes into

account the possibility of multiple intersecting shadows.

This time, we do not use the shadow edge image. Instead, we will use the 2D

chromaticity invariant image, Iinv, and the meanshift image, IM , obtained with the same

parameters as before. Let us denote by Ri the regions of IM and by RCi the regions that

are connected to (i.e, have a common edge with) Ri. We look at the regions in Iinv

(e.g, by overlaying the IM edge map, see Fig. 4.4 for an illustration). Let us consider a

specific region Rı̂. If all its connected regions RCı̂ have different RGB values from Rı̂

(more than 10% difference), we do nothing because it implies that the difference picked
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up in meanshift is a material difference. Otherwise, if there is a ̂ ∈ Cı̂ such that R̂ has

less than 10% difference with Rı̂, we label the darkest region of the two as a shadow

region. Since we label regions instead of edges, we are sidestepping the problem of

open edges. Additionally, this method allows us to rank the relative strength of adjacent

shadow regions.

Figure 4.4: Top row: The original image and the meanshift image, used to compare the
relative darkness of regions. Bottom row:the invariant image with the edges from IM super-
imposed and the resulting shadow mask.

Consider the case -illustrated in Fig 4.5 top left- where multiple shadows are cast by

different point light sources. When the shadows from two light sources intersect, their

intersection will be darker than the original regions, thus creating another region in IS .

The invariant image will, however, not bear an edge and we will therefore face the case

where a shadow region will be connected to a “darker shadow” region. We can thus

decide to label them as such, therefore enabling us to remove those multiple shadows
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more accurately.

Figure 4.5: Top row: The original image, the reintegration using a multiple level shadow
mask, the reintegration using a binary mask. Bottom row: the multiple level mask proposed
here, each shade of gray corresponds to a different relative shadow strength -here: 3 different
levels; the binary shadow mask used in [FDL04].

A comparison of the influence of the new shadow mask and the one proposed

in [FF05] on reintegration can be seen in Fig. 4.5, as well as the resulting reintegra-

tion from the different masks. Shadow masks obtained with this method are shown in

Fig. 4.6.
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Figure 4.6: Left column: Original Images. Right column: Shadow regions detected with our
method.

4.2 Chromagenic Illuminant Detection

In this section, we propose a new method to detect shadows and other types of multiple

illumination. Our approach, based on the chromagenic method for illuminant estimation
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outputs very precise binary illumination maps that can even accurately detect occlusion

shadows in cases where all the edges surrounding a shadow region are coincidental

material/illuminant edges, a non-feasible task for most shadow detection methods.

In Chapter 3, we reviewed the chromagenic algorithm for illuminant estimation.

This algorithm can accurately estimate an image illuminant and, importantly, is pixel-

based. One can therefore assume that the same methodology can be applied to illumi-

nant detection. To do so, given a pair of filtered and unfiltered images as well as a set

of pre-computed linear transforms Ti, one simply applies the chromagenic illuminant

estimation algorithm and, for each pixel in the image, records which transform best

maps the unfiltered RGB values to their filtered counterparts. The best transform for

each pixel indexes the incident illuminant for that pixel.

An example of such processing is shown in Fig. 4.7 where a reflectance image from

the Nascimento set [NFF02] is illuminated with two distinct lights from E87 (the 87

lights from [BCF02]). We see from (4.7 right) however that the detected illuminants

-each pixel has for value the index of its best transform- do not correspond to the input,

even though the images are perfectly registered. The problem here is that the chroma-

genic approach is efficient when multiple surfaces are present in the scene but is also

-as we have seen in Chapter 3, Fig. 3.3- fragile, when a single surface is present in the

scene.

To address this stability issue, we transform the illuminant estimation algorithm in

one of illuminant discrimination -or detection. Importantly, we do not aim to recover the

actual scene illuminants but, instead, we look for the transforms that best discriminate

the multiple illuminants in the scene irrespectively of the estimation accuracy. The

starting point of our approach is to suppose there are m lights present in the image. In

practice m ≤ 2 will be appropriate for most images, m = 2 is particulary important for

it represents the shadow detection case.

Let EN be a set N lights for which we carry out the chromagenic preprocessing
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Figure 4.7: Left: One of the reflectance image from [NFF02], the left and right halves of the
image are illuminated by two different lights. Right: The result of illuminant detection using
the standard chromagenic algorithm. Each pixel of the image has for value the index of the
transform that best maps it to its filtered counterpart.

step and solve for the N relations, the 3 × 3 linear transforms Ti, that best map RGBs

to filtered counterparts.

Suppose we now select m elements in N , denoting the corresponding subset Em,

with Em ⊂ EN . Taking each pixel in turn, we determine which of the m relations best

maps its RGB values to the filtered ones. Once each pixel is assigned a single of the m

relations, we can assess how well the subset Em accounts for the data by calculating its

error:

errorEm =
m∑
i=1

‖Ti Ii − IFi ‖ (4.1)

Where Ii and IFi are the unfiltered and filtered RGB pairs of the image I that are best

mapped by Ti.

Equation (4.1) measures how well one subset of EN models the transition from

the image to its filtered equivalent. It does not, however, guarantee that this particular

subset is optimal -it does not even tell how good this subset is. To minimize detection

errors, we therefore have to evaluate equation (4.1) for all possible m-elements subsets

of EN . Let E(m) be the set of all m-elements subsets of EN . The Eopt ∈ E(m) that
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best describes the relation between the image and its filtered counterpart is:

Eopt = arg min
Em∈E(m)

(errorEm) (4.2)

Once we have found subset Eopt that minimizes the mapping error among all m-

subsets, we create our illuminant map M as:

M(x) = arg min
i∈m
‖TiI(x)− IF (x)‖ (4.3)

i.e., the xth pixel of M takes the value of the index of the transform that best maps the

xth pixel of I to its filtered response.

Implemented naively, obtaining M can be computationally laborious. The compu-

tational cost is proportional to the cardinality of the set E(m). If we chose m lights

among N , then:

](E(m)) =
N !

(N −m)!m!
(4.4)

Considering our set of 87 lights, the number of different m-sets is (3, 741), (105, 995)

and (2.2 106), for m = 2, 3, 4 respectively. A brute force search is only really possible

for small m, i.e., m = 2 or m = 3.

4.3 The Two Illuminants Problem

The case where m = 2 is the commonest instance of the multiple illumination problem.

Indeed, in every day circumstances such as the presence of shadows or the combina-

tion of natural and artificial light sources in indoor environments, the number of main,

different, illuminants is rarely greater than two.

Limiting ourselves to the case where two illuminants are present also makes the

problem more tractable since there are only N2±N
2

relations to test for if we have a

set of N lights (the ±N comes from the decision to include or not pairs of identical
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illuminants). In our experiments, since we have either 87 -for the synthetic case- or 86

-for the real images- illuminants: the number of possibilities is smaller than 4, 000.

To test our framework for illuminant detection, we start by considering the re-

flectance images of Nascimento et al [NFF02] and E87: the SFU set of 87 measured

lights. We generate images by illuminating each half of the image with a different light.

Then, we use our algorithm to classify pixels as ‘0’ or ‘1’ depending on which of the

two illuminant best maps them to the filtered values, thus creating a binary mask of illu-

mination. This procedure is illustrated in Fig. 4.8 where the two images are illuminated

by sky-light/sunlight and floodlight/sunlight respectively, thereby reproducing two of

the most frequent naturally occurring two-illuminant scenes.

The results illustrate that, while generally accurate, the classification is noisy even

though the images are perfectly registered. The presence of noise is expected since

the classification is still done at pixel-level only; the confusion can be explained by a

misclassification due to having a single reflectance for each computation. To improve

the detection accuracy, we propose to perform the classification not at pixel-level but at

region-level.

The main insight of a region-based approach is that, over an area, the predominance

of a class of pixels is correlated with the prevailing illuminant. It follows that we can

modify the pixel-level classification to take into account neighboring information.

To do so, let R be a partition of I into K distinct regions Rj, j = {1, . . . , K}.

We formulate our region-based approach by rewriting equation (4.3), defining the illu-

minant map for a region Rj , MRj , to be the result of a function over the filtered and

unfiltered corresponding region of the image.

MRj = FRj(IRj , IFRj) (4.5)

where IRj represents the pixels of I that belong to region Rj; MRj will take a single

value for the entire region. For each region of the image, the region is labelled using
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Figure 4.8: Top row: 2 reflectance images from the Nascimento dataset [NFF02]. The left
image created using both skylight and sunlight spectra, The right image using neon light and
sunlight spectra. Bottom row: The pixel wise classification of illuminants for the two images.

the index of the transform that best maps it to its filtered response. We use here the

function FRj to define what that best mapping is. The function can take any form and

we illustrate here two: majority voting and minimization of pixel-based error over the

region.

In the majority voting case, the image is first processed according to equation (4.1).

Then, within each region, the number of pixels that belong to each class is counted. The
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entire region is assigned the label of the majority of pixels:

FRj(IRj , IFRj) = arg max
i

(](TiIRj − IFRj)) (4.6)

That is, the function takes for value the index i which maps the largest number of pixels

in Rj with the least error (compared to all other transforms).

The region-based labelling can also be done using a min error metric. In that case,

the whole region is evaluated using both illuminants in turn. The region is then labelled

according to which one of the two transforms has minimal error, i.e.,

FRj(IRj , IFRj) = arg min
i
‖TiIRj − IFRj‖ (4.7)

The outcome of both methods is illustrated in Fig. 4.9 where the image is partitioned

in 8× 8 blocks (the outcome of both region-based labelling is identical, so a single map

is shown). On most of our experiments, we have not found any significative difference

between either method, so in the following we keep our framework coherent and use,

for region classification, the method of error minimization.

Figure 4.9: Left: The original image with two illuminants. Middle: the result of pixel-wise
classification. Right: the illuminant mask processed on 8× 8 regions with the methods of ei-
ther majority voting and error minimization. The results of both region-methods is identical;
in general no significant difference is observed between the two methods.

Using a region-based labelling has an additional advantage when illuminant detec-
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tion is performed on real images: image registration (or lack thereof). Consider the pair

of images shown in Fig. 4.10; the images appear to be registered but, at a pixel-level, it

is actually not the case. Consequentially, the detection will be noisier than in the syn-

thetic case (Fig. 4.10: right). A region-based approach is therefore more adapted for a

cleaner classification.

Figure 4.10: Top Row left and right: the original and filtered image, while they appear to be
registered, this is not the case at pixel level. Bottom row: Registration differences (left) and
the result of pixel-based classification (right). The detection is mostly accurate but noisy.

Since real images have noisier masks, the regions’ shape and size noticeably influ-

ence the final results. This dependency is illustrated in Fig. 4.11 where we process the
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pixel-level mask using both a 8 × 8 window and regions obtained with a segmentation

algorithm (in this case, the meanshift algorithm [CM02]). While in both case we sig-

nificantly oversegment the image, the meanshift segmentation is better for our purposes

as it preserves the image edges and results in more accurate masks. We point out that

any segmentation method that preserves most of the edge structure of the image would

be suited for our type of processing.

Figure 4.11: Top row: The original image and the meanshift segmentation. Bottom row: the
results from partitioning the image with 8×8 blocks and with the meanshift algorithm. Since
it preserves the edges, the segmentation results yields more accurate masks.

To visualize the results, the image can be decomposed according to the binary mask.

Doing so allows us to actually see what parts of the image are detected as being differ-
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ently illuminated. The results, Fig. 4.12, show that the image is effectively segmented

in shadow and non-shadow regions.

Figure 4.12: The original image and its segmentation according to the binary mask obtained
with the chromagenic illuminant detection. Both the shadow and lit parts of the image are
accurately segmented.

Results for various situations of indoor and outdoor lighting are shown in Fig. 4.13.

For every image we used meanshift to segment the images using its standard parameters

and a minimum region size of 0.5% the size of the image. Despite some minor accura-

cies, the illuminations are well separated. One of the main strengths of this method is its

ability to detect occlusion shadows even when all of the region edges are coincidental

material and shadow edges, a major improvement over gradient or region comparison

methods that generally assume the reflectances on both sides of a shadow edge are

identical.

4.4 m 6= 2

When two illuminants are present in an image and the detection algorithm is constrained

to discriminate them, we saw that this discrimination was accurate. It is however diffi-

cult to infer the number of illuminants present in an image a priori. First, we want to

analyze the algorithm’s behavior when a single illuminant is present but we try to find

two.
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Figure 4.13: Columns from left to right: the original images, the meanshift segmentation,
the pixel-based classification, and the region-based classification .
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In essence, we run the exact same test as in the previous section, but on images that

contain only a single illuminant. The results (Fig. 4.14) show that, while the algorithm

is looking for the best pair of illuminants, the returned map is almost unitary. From

these results, we infer that we can assume the maximum number of lights in the image

to be higher than in reality and still obtain accurate results.

Figure 4.14: columns from left to right, 1) the original images containing a single illuminant;
2) the pixel-based pair classification: the map is almost unitary but for some minor noise;
3) the results using region processing: again, almost all regions are labelled using a single
illuminant.

For completeness, we now address the case where more than two illuminants are

present. While theoretically possible, the number of different mappings for m = 3 and

4 is 105, 995 and 2.2 106 respectively (for our set of 87 transforms). Also, in natural

images, there are few cases where more than three main, spectrally different, lights are

present. The case of three illuminants can usually be put down to the presence of two

distinct lights plus the mixture of those lights (such as the penumbra in shadows where
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the transition is not immediate).

We illustrate the three lights case on both reflectances images (where the lights are

distinct) and on real images (where the distinction is blurred). For real images, we look

at the difference between assuming the presence of either two or three illuminants. The

results (Fig. 4.15) show that the detection, in the synthetic case, is as accurate as when

two illuminants are sought. On real images, we see that the transitory regions are picked

up as different illuminants but the improvement does not necessarily justify the increase

in complexity.

Figure 4.15: Detection assuming three illuminants. Top row: synthetic images and results
from both pixel and region classification. Bottom row: indoor scene with two main illumi-
nants. Assuming two illuminants sperate them (3rd image). Assuming three illuminants en-
ables to refine the classification depending on the relative proportion of the two illuminants
in the scene.

We point out that, for illumination detection, the number of transforms Ti can be

reduced. Indeed, since we are interested in finding out illumination difference irrespec-

tively of the accuracy of illuminant estimation, we can limit the number of transforms

used so that they still cover the possible gamut of lights but with a coarser sampling.

This can be achieved, for example, by looking at the images in the training set

and manually selecting a single transform per illuminant class (i.e., keeping only a
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single sunlit image to represent the whole class of sunlight illuminants). Alternatively,

we obtained similar results to the ones presented throughout this section by plotting

the mapped 2D chromaticities of a white patch with all the transforms and selecting a

smaller number (15 out of 87) using the k-means algorithm to form clusters.

4.5 Conclusion

In this chapter we have shown that the shadow edge detection method presented in

[FDL04] could be improved upon to complete the edges and to incorporate the possi-

bility of spatially varying shadows. Both those improvements translate in significantly

better shadow removal possibilities.

We also have introduced a new method to detect multiple illuminants in images

based on the chromagenic theory. By forcing the lights to be examined pair-wise with-

out preoccupying ourselves about the accuracy of the illuminant estimation and pro-

cessing the results on a region instead of a pixel basis, we obtained very accurate results

for a variety of illuminations. We went on to show that this method does not require

prior knowledge of the number of lights in the image and were also able, when more

than two illuminants were assumed, to detect shadow penumbra.



Chapter 5

Removing Shadows

In this chapter, we investigate the problem of shadow removal. To do so, we assume

throughout this chapter that shadows have been detected (e.g., using one of the methods

from Chapter 4).

We start by presenting a 1-dimensional method to remove shadows and analyze the

behavior of both our 1D and the 2D (proposed in [FDL04] and reviewed in Chapter

2) reintegration methods. We go on to provide a robust framework to remove shadows

using random Hamiltonian paths and develop an algorithm to generate paths, over a

special class of grid graphs, in linear time. Results on real images show that our 1D

robust method provides significantly better results than a simple 2D reintegration.

Finally, when the conditions of shadow formation are known (i.e., we know which

type of shadow is present in the image), we provide a simple method to remove shadows

with minimal inference by simply adding a constant to the logarithm of the colour

image. Results show that, with known conditions, this method can provide results that

are as accurate as the 1D method.

85
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5.1 1D Shadow Removal

To process an image I in one dimension, we will use a path p that visits every pixel once

and once only. This ensures that the integration is well posed: we recover one bright-

ness value from one derivative per pixel. From [FHLD06] we know that, if the shadow

boundaries are given, a shadow-free image can be obtain by setting the image deriva-

tives to zero at the shadow boundaries and then reintegrating the image in log space.

Throughout this chapter, we will tacitly assume that the image is first transformed in

log space, where all the calculations are done. The resulting shadow-free image is then

exponentiated prior to display.

For the sake of simplicity, let da denote the derivatives of I along p in either direc-

tion, a = x or a = y. I is integrated, in standard calculus notation:

I + c =

∫
p

dI

da
da (5.1)

with an unknown integration constant c, using the appropriate derivative direction (dx

or dy) as the path is swept out. Starting the reintegration at a non-shadow pixel, e.g.,

one of the brightest pixels, which we denote p1, we can uniquely determine c and obtain

a correct shadow-free image I ′. Let pi be the ith pixel visited along p; the path-based

integration becomes:

I ′p1 = Ip1 (5.2)

I ′pi = I ′pi−1
+ T (∇I)pi (5.3)
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Where T (∇I) is defined as

T (∇I) =


0, for |∇I| ∈ S (5.4a)
dI

dx
, if −−−→pi−1pi in the x direction (5.4b)

dI

dy
, if −−−→pi−1pi in the y direction (5.4c)

Where S represents the location of the shadow edges.

From a complexity point of view, the integration problem is reduced to a series of

sums with no boundary conditions to consider.

Let us now consider how we can generate paths that visit all pixels once and once

only. We interpret I as a grid graph of size n×m where each pixel is a node and where

edges are assigned on a 4-neighborhood basis: left, right, up and down. Finding a path

p that visits all pixels once and once only then amounts to finding a Hamiltonian path

over the graph.

The general problem of finding Hamiltonian paths in a general graph is NP-complete

[GJ90], i.e., its complexity varies exponentially with the size of the input. Even for

the sub-class spanned by general grid-graphs, this complexity doesn’t change [IPS82].

However, since the simple 1D approach works on complete rectangular grid graphs (a

sub-sub-class), there are certain available easy paths; for example, raster and fractal

type paths such as Peano curves [Man82] among others, illustrated in Fig. 5.1. Using

such paths and thresholding the image gradients at the shadow edge locations enables

the reintegration of shadow-free images. However, in practical situations we will not

always correctly estimate where a shadow edge is, and incorrect estimates will lead to

errors in reintegration. Moreover, regular paths tend to propagate regular errors. As

an example: using a raster path often results in banding errors in the reintegrated im-

age (see for example in Fig. 5.2). While integrating the same image multiple times

and averaging the results can help, it serves only to diminish, not always by much, the

reintegration errors.
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Figure 5.1: Examples of Hamiltonian paths on grid graphs. The 2 top images are raster
paths and the 2 bottom ones are example of Peano curves obtained with different generators.

Figure 5.2: The original image (left) and its shadow-free 1D reintegration using the average
reintegration of the two raster paths and Peano curves (right). One can notice that even
though the image is shadow-free, many regular artifacts are created during the reintegration.
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5.2 Analysis of Reintegration

Let us first consider the case where we have perfect shadow masks. In this case, for

both the 1D or 2D situations, we set derivatives under the shadow edges to zero and

then reintegrate. This ‘setting to zero’ results in an image that is non integrable in two

dimensions: there does not exist an image with the x and y derivatives we have after the

masking step. To solve this non-integrability problem we seek a least-squares solution

and solve for the image whose x and y derivatives are as close as possible, in the least

squares sense, to the derivatives we seek to integrate by inverting the associated Poisson

equation. Unfortunately, the best least-squares solution tends to return an image where

the non integrability caused by the shadow edge can result in errors propagated across

large sections of the image. 2D reintegration is a global procedure. In the 1D case, if

we use Hamiltonian paths, then the problem is well-posed, there are no integrability

problems and the boundary conditions are easily determined.

A more subtle problem is the issue of coincident shadow and material edge bound-

aries. In masking out the shadow edge, there is an implicit assumption that both sides

of the shadow correspond to the same surface. This, though not frequently, can be vio-

lated in images. Again, the issue manifests itself as potentially quite large errors during

reintegration.

We illustrate these ideas in Fig. 5.3. This figure can be used as ground truth since

the desired result is exactly known -the shadow free image we start with. The first im-

age shown is an artificial image composed of small gradients and a couple of step edges

(large gradients). The superimposed shadow region, shown as the ellipse in black over-

lay, contains a step edge while most of the shadow boundaries are laid over small gra-

dients. The image on the bottom left shows the reintegration using the Poisson method

when a perfect shadow mask is used. Clearly, the result is shadow free but the image

colour is incorrectly estimated. In the bottom right, we look at the 1D reintegration

using a raster type path. We again see a failure of reintegration. Moreover, the shape of
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Figure 5.3: The original image (top left) with the artificial shadow region in black overlay
(top right); the 2D reintegration (bottom left) where the image colour is altered, and the 1D
reintegration with a raster path (bottom right) where the regular propagation errors can be
seen.

the integrating path is clearly seen. The main problem here is the assumption that there

are no coincidental material and shadow changes. This assumption is violated and so

we propagate incorrect brightnesses across the edge.

It is worth making a couple of additional remarks about Fig. 5.3: first, this is the per-

formance for a perfect shadow mask. Second, the left two thirds of the 1D reintegrated

image (bottom right) are almost acceptable. Here the raster reintegration is working fine

until we reach a coincident shadow and material edge. This gives us a hint on how to

proceed. If we can manage the reintegration and statistically choose to avoid problem

edges, then we can use the 1D path approach to reintegrate the images. In contrast,

there seems to be no easy solution to the 2D reintegration problem: the whole of the 2D
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reintegration is affected by error.

5.3 Making 1D reintegration work

Let us begin by considering in detail the sources of error we might encounter during path

based reintegration. The creation and propagation of artifacts is illustrated in Fig. 5.4.

The x-axis of the graphs represents the path progression, while the y-axis represents

pixel intensity. Fig. 5.4a displays the ideal case where the non-shadow parts of the

image are preserved and the shadow is effectively removed. If the shadow mask is not

closed, a path can enter the shadow region through a detected shadow edge but then exit

it through a “hole” in the edge map (this is the main reason we closed the edge maps in

Chapter 4). Such a case is shown in Fig. 5.4b where the resulting high error is clear.

Lastly, errors are also caused when a material edge coincides with a shadow edge or,

equally, when noise is present. Here the problem is that one assumes that both sides of

the shadow edge are “continuous”, i.e., they would be the same given identical lighting

conditions, even though they might not be. While this assumption generally holds, it

is, and must be, sometimes violated in actual images. Fig. 5.4c shows the case where

noise is present at the exit of the shadow region; the thresholded gradient does not take

the noise into account and errors result. The profile in Fig. 5.4c is also indicative of a

coincident shadow/material boundary.

While these errors are cause for concern, we draw the reader’s attention back to

the 1D reintegration shown in Fig. 5.3. There it is clear we did well at the start but

then encountered an error (about one third of the way through) that was propagated

throughout the rest of the image. The problem occurred, in this case, where we had a

coincident shadow and “material” boundary. Let us imagine that, instead of taking a

raster path, we reintegrate along a path which, by design, enters and exits the shadow

region only once and that the entry and exit are located where no error is present. The



CHAPTER 5. REMOVING SHADOWS 92

Figure 5.4: Graph representation of the shadow regions of an image. (a) a perfect (supposed)
reintegration. (b) Reintegration with errors due to an imperfect shadow mask. The entry
in the shadow region is well detected but the exit is not, thus creating a large error. (c)
The noise/material edges case. The shadow edges are well detected, but the assumption of
similarity is not enforced. Note how an error created at a point p1 in time is still propagated
throughout all the subsequent pixels visited pi, i > 1.

result is shown in Fig. 5.5(left). We see that we have a perfect reintegration (note the

black line is the shadow mask which is not reintegrated here because we crossed the

shadow edge once). To obtain Fig. 5.5(right), we removed the remaining shadow edge

by inpainting. This simple example shows how we can reintegrate in one dimension

without error as long as we choose entry and exit points where there is no error. But,

how can we achieve this reintegration for real images where we do not know where the

sources of error are?
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Figure 5.5: Robust 1D reintegration. The left figure is the direct output of the reintegration.
Most of the shadow mask is still present since the path crosses it only once. The right figure
is the result after inpainting the shadow mask.

The solution here is to consider what happens statistically during reintegration. Let

pe denote the probability of encountering either noise or a coincidental luminance/material

edge (i.e., the probability of committing an error in the reintegration). If we enter and

exit a shadow region N times, such as is done using one of the paths of Fig. 5.1, then

the probability of at least one error being propagated is 1− (1− pe)N , which tends to 1

when N is large. If, however, by design we only enter and exit the shadow region once,

the probability of error propagation is pe (for N > 1, pe � 1 − (1 − pe)N ). So, if we

enter and exit a shadow once it is unlikely that we will commit an error. But, this said,

we might still be unlucky.

Now, suppose that we reintegrate an image several times, and each time use a dif-

ferent path that enters and exits the shadow at a different place. If α is the number

of paths, the probability of all the paths being corrupted becomes pαe (which is almost

always close to zero). If pe is 0.5 (which is much higher than can possibly occur) and

α = 8 then the chance that all 8 paths are corrupted is 1/256.

The statistical argument set forth above notwithstanding, some errors will exist.

Empirically, we find that the trajectory of the path can show up in the reintegrated

image if there is an error. We therefore wish to generate non regular paths, in order

to limit the conspicuity of errors (see [Wan95] for discussion of how the human visual
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system is sensitive to regular patterns).

In summary, in order to improve 1D reintegration we propose three modifications to

the basic 1D algorithm (the closing of shadow edges has been addressed in the previous

chapter):

• Constraining the path structure so that there is a single crossing of the shadow

edge (illustrated in Fig. 5.6). This minimizes the likelihood of encountering either

noise or a material change at the location of the crossing.

• Randomizing the path structure in order to minimize the visibility of artifacts.

• Inpainting the uncrossed parts of the shadow edges

Figure 5.6: A shadow edge (in black) where we allow one opening (left & middle) and a
random Hamiltonian cycle over the image visiting every valid pixel. It can be noticed that
the simple paths previously shown are not usable for such a graph.

Figure 5.7: From left to right: Results of shadow removal with the original 1D formulation,
the 2D integration method, the robust 1D method outlined above without and with inpainting.
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Figure 5.7 exhibits all type of shadow removal discussed so far: 1D with regular

paths, the 1D method outlined above and the 2D method. In the robust 1D method, since

a single opening in the shadow mask is allowed, so the image is not fully reintegrated.

The boundary can however be removed by way of inpainting.

We first look at all the necessary steps to achieve a simple yet robust framework for

shadow removal. We develop a method to obtain random Hamiltonian paths in a linear

time; a coding friendly method is presented in Appendix A. We then show that more

stable results can be achieved through averaging the outcome of several paths and we

propose a metric to assess the reintegration quality.

5.4 Random Hamiltonian Paths

In our earlier discussion, we proposed that paths should be random in nature and that

they should be Hamiltonian, i.e. they should enter and exit shadow regions only once.

In [IPS82] it has been shown that, for a general grid graph, finding a Hamiltonian path

is an NP-complete problem. There exist, however, special classes of grid graphs for

which such paths can be found in a polynomial time [CST02, IPS82, Joh02, MS93,

Adh01, UL97, Sab91]. Our contribution here is twofold as we propose both the class

for which we can find a Hamiltonian cycle as well as an easy to implement algorithm

to obtain the cycle in a linear time; the complexity of the algorithm is O(N) where N

is the number of pixels in the image.

We propose that this process can be achieved in 3 steps: initialization of the path,

adding constraints (the once-in-once-out entry to shadows), and construction, where the

path is returned.
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5.4.1 Initialization

The necessary and sufficient condition for our algorithm to output a Hamiltonian path

in a linear time is that the graph has to be complete when downsampled by a factor of

two.

Downsampling a graph by a factor of two consists of dividing its height and width

by two. Doing this, one effectively merges four vertices together while keeping the

existing edges between these groups of four vertices.

Complete is used to describe a graph where all the downsampled vertices were com-

posed of vertices of a single type: valid or non-valid; a vertex will be deemed non-valid

if it belongs to the shadow edge. Both properties are illustrated in Fig. 5.8.

Since the shadow edges can assume any shape, the completeness property is gen-

erally not met. In practice, we enforce this property using a majority voting procedure

such as the one illustrated in Fig. 5.9. This method ensures that a complete graph is

obtained while minimizing the modifications of the shadow mask.

Let I be an n×m image where the shadow mask has been found and whose graph

representation is complete. A Hamiltonian cycle over the valid pixels of I can be found

in a linear time.

In the graph representation of I , all valid pixels are represented as vertices and all

non valid ones (the shadow mask pixels) are represented as holes in the graph. Let G

be the graph representation of I and GR the n
2
× m

2
graph obtained by downsampling G

by a factor 2.

5.4.2 Constraining Openings

Since the shadow mask is closed and composed of only non-valid pixels, G and GR

will have at least two distinct components. It follows that, in order to compute a path,

the graph must first be connected; we will here connect GR. To do so, let us consider
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Figure 5.8: An incomplete grid graph (top left) and its downsampled representation (top
right). The gray node represents a partial node since it is obtained from nodes having dif-
ferent types. The bottom graphs illustrate a complete grid graph and its downsampled repre-
sentation.

Figure 5.9: A graph containing partial nodes and its complete version. Partial nodes are
transformed according to majority voting.
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the case of a two components graph, i.e., the image contains one shadow and one non-

shadow region. The graph is connected by first labelling every node on one side of the

edge with s and every node on the other side with t. An s vertex is selected at random

and the shortest path from it to any t vertex is computed. The edges and vertices visited

by this s − t path are “validated” and thus the graph is then connected. An illustration

of this procedure is shown in Fig. 5.10. The shortest path maximizes the chances to

enforce continuity since the “travel” through the shadow edge is minimized. If GR

admits k ≥ 2 distinct components, the connecting procedure is repeated k − 1 times.

Figure 5.10: Left: The graph at the start of the st procedure. The dashed edges and gray
vertices represent the possibilities of going from an s to a t vertex. On the right: the outcome.
An s vertex has randomly been chosen and the shortest way to a t vertex is computed with all
edges having a unitary weight.

5.4.3 Construction

Once GR is connected, we proceed by finding its minimum spanning tree, TR, using the

method of Krager et al. [KKT95] that has a linear time complexity. Since at first all the

edges in GR have unitary weight and the path structure will closely resemble the one

of TR, we weigh the edges of GR with random weights prior to computing TR. This

ensures the resulting path will have a suitable random structure.

An Hamiltonian cycle overG is then found by: forming a cycle over TR, upsampling

TR by a factor of 2 to obtain T , a partial version of G and finally, completing T so that
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Figure 5.11: (a) The spanning tree TR and its walk around; (b) T , the upsampled version of
TR with the existing edges being upsampled as well. (c) The Hamiltonian cycle found by our
algorithm on the original graph.

it forms a Hamiltonian cycle over G.

The cycle over the spanning tree is formed by walking around TR. Starting at the

root, TR is explored, in a depth first search manner, until all its edges have been visited

twice. This yields the order in which the vertices will be visited in the final path. This

procedure is illustrated in Fig. 5.11.

Upsampling a graph by a factor of two is the dual operation of downsampling. We

first double the width and height of the graph, thus quadrupling the number of vertices.

Existing edges are then reinstated. To preserve the graph structure, the edges are dou-

bled so that every group of four vertices has the same connectivity to its neighbors as

in the downsampled version. The process of upsampling can be seen in Fig. 5.11a and

5.11b.

Because of the down/upsampling procedures, some information (here edges) has

been lost and thus T is incomplete, as shown in Fig. 5.11b. We therefore need to

complete T in such a way that it forms an Hamiltonian cycle. To admit such a cycle, T

needs to fulfill two properties: every vertex has degree two and the cycle must span G

(there should be no sub-cycles).
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Using the geometrical structure of grid graphs, we know that each vertex of G has a

degree of at most four. This limitation allow us to prove by exhaustion that an Hamil-

tonian cycle over G can always be found. In T , depending on the structure of the

four-vertices groups, there are five distinct patterns (rotations notwithstanding) that can

be used to complete the edges while ensuring that each vertex has degree two and that

no sub-cycles are created. The complete set of patterns is shown in Fig. 5.12.

While this algorithm comprises several steps, its complexity is nonetheless linear.

Down and upsampling are both linear operations and the minimum spanning tree can

also be found in a linear time [KKT95]. The completion step is linear since for every

4-vertices group there are at most five comparisons in order to determine which com-

pletion pattern to apply. Therefore, our algorithm ensures that we will find a random

Hamiltonian cycle over G with a linear time complexity. Our C++ implementation

of the algorithm, shown in Appendix A, takes 0.5 seconds to calculate a path on a

1024×1024 image.

Figure 5.12: The 5 different cases to complete the missing edges in order to ensure that no
node has a degree other than two and that all nodes are connected. The “outside edges” are
created during the upsampling procedure and the number of edges to add therefore depends
on the degree of the equivalent node in T . Note that these are the only possible cases that can
occur. It follows that it is always possible to obtain a Hamiltonian cycle with this method.
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5.5 Finalizing the Integration

Let pe be the probability of committing an error because of noise or a material change

while crossing the shadow edge when the shadow edge is entered and exited once.

General Hamiltonian paths proposed in [FF04] cross the shadow edge N times. They

therefore commit an error with a probability of (1 − (1 − pe)
N). Using the random

Hamiltonian paths previously described, we can reduce this probability to pe.

While this approach minimizes the chances of erroneous reintegration, it does not

by itself guarantee an artifact free integration. To ensure that minimal errors will be

committed, we proceed as follows.

We start by generating n different random paths and integrate along them to obtain

n shadow-free images I1, . . . , In. If pe is the probability of error for one image, then the

probability that all images are significantly corrupted (contain very visible artifacts) is

pne . In practice, using n = 10− 15 always yielded at least one almost error free image.

From those n images, we therefore have to choose which ones are free from artifacts.

To do so, we first separate all reintegrated images in three regions; this is illustrated in

Fig. 5.13. The first region, R1, is composed of the pixels between the start of the

integration and the first entry into a shadow region. By definition, all of I1, . . . , In

display a perfect reintegration in this region (i.e., their values are the same as the ones of

I , the original image). The second region, R2 comprises pixels that are located within

the shadow regions of I . Since there is no indication as to what values those pixels

should have, they contain no useful information to distinguish the reintegrated images.

The last part, R3 is composed of the pixels that are in shadowless parts of I and that are

located, path-wise, after exiting at least one shadow region. Here, we have a reference

value as to what those pixels should be (i.e., the values of I). We can therefore devise

a reference metric, ∆RGB to find out how much has an image been wrongly modified

during reintegration. Since errors are propagated, we weight the distance according to

the size of R3.
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Let M be the number of pixels in R3 and I ′ be a reintegrated image. We calculate

∆RGB between I and I ′ as follows:

∆RGB =

√
(RI −RI′)2 + (GI −GI′)2 + (BI −BI′)2

M
(5.5)

Among the n images, we are then able to select the ones that are the closest to the

original image in the non-shadow regions, thereby ensuring that a good reintegration

has been performed. In practice, we select the four images that have the lowest ∆RGB

and average them to further minimize the visibility of artifacts that might remain.

Figure 5.13: The solid black line is the path prior to its entry in the shadow region (R1)
(symbolized here with thick black edges), the reintegration along that part of the path is
perfect and not considered. The dashed line is the portion of the path that lies within a
shadow region (R2) The solid red line is the part of the path that we can compare to the
original image (R3) and measure the errors that may have been committed.

5.5.1 Addressing the Shadow Edges

The strength of the path-based approach is that we can ignore the shadow mask region

(which is the major source of reintegration errors). Depending on the desired applica-

tion, we may however want to consider that part of the image as well. As we know

the location of the shadow edges and since they are a very small part of the image, ap-

plications such as recognition and indexing can proceed by discounting all information
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coming from that part of the image. In applications where a photographic-like output is

desirable, one needs to render the shadow edges.

To do so generally requires the use of an inpainting technique. A widely used ap-

proach is the diffusion-based method of [BSCB00] that “regrows” information based

on the boundaries of the region to inpaint and on the physics diffusion equation. The

approach we chose here however is the texel-based method of Criminisi et al. [CPT04].

Our main reason to use this method is the quality of the results -see Fig. 5.14 for an

example. It does, however, replace the target region with information already present

in the original image; it is therefore closer to a synthetic approach such as cloning.

Depending on the intended application for the shadow-free images, this inpainting step

can either be omitted or replaced by another inpainting technique, without modification

to the shadow detection-removal framework we proposed.

Figure 5.14: An example of the inpainting procedure. The left image is the outcome of the
reintegration procedure. The shadow mask, in black, is not visited by the path and is “missing
information”. We use inpainting to fill in the mask with information already present in the
image.

5.6 1D Reintegration Results

Let us begin by returning to the reintegrations illustrated in Fig. 5.3 and Fig. 5.7. We

seek an objective measure for quantifying how well the original image function has
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been recovered. Let ∇I be the gradient of the non-shadow pixels of the original image

I and, ∇I1D and ∇I2D be the gradients of the images reintegrated with the robust 1D

and 2D methods respectively. We compute the error between those gradients, d1D and

d2D, using the following

d1D =
|∇I −∇I1D|
‖∇I‖

, d2D =
|∇I −∇I2D|
‖∇I‖

(5.6)

Since the 2D method solves the integration in the least squares sense, it is expected

that the recovered derivatives will be globally close to the originals. The path-based

method on the other hand recovers derivatives that are much closer to the original ones

on a pixel by pixel comparison due to the locality of the procedure. Averaging over a

number of images yields d1D = 3% and d2D = 9%.

This result might seem counterintuitive since we have less error than a least-squares

solution. However, the higher error in the 2D reintegration results from trying to recover

an image which has zero derivatives over the entire shadow edge. Since this is generally

not the case for the entire shadow boundary, errors are then created. The 1D method

we develop here works better because it ignores the details (and derivatives) under the

shadow edges.

5.6.1 General Images

Let us now consider reintegration results on real images. Fig. 5.15 shows results ob-

tained over a variety of images; the 1D results are obtained by reintegrating with ten

different paths and then averaging the output of the three best ones, with the method

mentioned in the previous section. The first three images have been taken with a Nikon

D70 camera with raw settings and then exported in 16 bits linear tiff. The fourth image

has been taken with an HP Photosmart camera also exporting 16 bits linear tiff images.

For both the detection and reintegration, no calibration nor pre-processing has been per-
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formed on the camera or the images themselves. On the results of Fig. 5.15, the first

line shows the original shadow image. Note that among the images, the shadows vary

in their location, size, shape and the background against which it is cast. The second

line displays the results obtained with the 2D integration method proposed in [FDL04]

where homogeneous Neumann boundary conditions were used. Finally, the third row

depicts the shadow-free images obtained with our method.

Based on those results, one observes that the images obtained with our method

are much more realistic. In many cases, one cannot guess that a shadow was ever

there. Furthermore, the non-shadow part of the original image is exactly preserved,

thus keeping the overall colorfulness and dynamic range of the scene.

Figure 5.15: Typical results from shadow removal. The second line are results obtained with
the 2D method; the third line are results obtained with our path-based algorithm.



CHAPTER 5. REMOVING SHADOWS 106

Results on more complex scenes are shown in Fig. 5.16. These images are jpgs

downloaded from the internet, the only precaution we have taken is to ensure they were

not too altered (“photoshopped”) so that the removal can still look realistic. The shadow

masks are obtained using the method explained in Chapter 4.1.2 and the masks are the

ones shown in Fig. 4.6.

Figure 5.16: Results of the 1D integration on jpg images where the shadows have been
detected with the region method from Chapter 4.
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5.6.2 Specific Cases

While the proposed approach to shadow detection and removal yields high quality re-

sults on general natural scenes, we are also interested in more specific cases where

the approach sometimes does not deliver as good results. The cases considered in this

section are noisy images, gradually varying shadows, and blurred (soft) shadows.

Noise: When a picture is taken under difficult conditions, a digital camera will have

a tendency towards generating coloured noise in the darker regions. As a consequence,

the probability of committing an error will be higher and artifacts may occur. This

phenomenon is illustrated in Fig 5.17 -first and second row-, where one can observe the

amount of noise present in the original image as well as its influence on reintegration

-in both the 2D and 1D cases. We can see that despite the noise, the shadows are greatly

attenuated and few artifacts occur. The more noise, the greater the artifacts though.

Gradually Varying Shadows (GVS): The case of GVS -an example can be seen

in Fig 5.17 third row-, both the detection and reintegration methods do not pick up

the small shading gradients between adjacent pixels. As a result, the shadow region

will be reintegrated uniformly and thus exact removal will not occur. The method does

not, however, fail as a strong shadow attenuation will occur, significantly improving the

image for further processing.

Soft Shadows: Soft shadows are typically created when an area light source is

obscured by an object. The shadows strength and the blur of their edges can range from

the almost unnoticeable to the very visible. There are two main issues when dealing

with soft shadow removal: firstly, detecting them. Due to the general absence of strong

edges as well as relatively small shading gradients, shadows are not always picked

up by the segmentation algorithm (in our case the meanshift segmenter). Secondly,

soft shadows usually also are GVS. The combination of those two factors make soft

shadows both difficult to detect and to remove adequately. The results for our method

are illustrated in Fig 5.17 -last row- where one can see that while the shadow(s) is
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significantly attenuated, lighting aberrations can occur.

When dealing with shadow removal what you detect is what you get. If a shadow

region in the image goes undetected, it cannot be removed thereafter. Such undetected

regions happen mostly in the case of soft shadows or in high dynamic range images.

In HDR images, clipping in highlights and shadows often occur -an example of such

clipping is in Fig 5.17, the shadow under the car. If a shadow region is clipped, it

does not follow the laws of physics anymore and can therefore niether be detected nor

removed.

5.7 Simple Shadow Removal

Finally, we propose a simple method that results in virtually error and shadow-free

images in a very short time. Our approach is based on the insight that, when shadows

have a constant strength within a region, shadow regions differ from their shadow-free

counterparts by a constant scaling factor. The scaling factor can be found by minimizing

the image differences across the shadow edge and by constraining this minimization to

known shadow formation behavior.

5.7.1 Finding the Constant

Looking back at Fig. 5.6, one can see that once the shadow boundary is crossed no

further modification of the image occurs. For a given opening and path, let P1 be the

last pixel visited by the path before crossing the shadow boundary and S1 be the first

pixel visited after the shadow boundary. What the 1D procedure does is to set S1 = P1

(the derivatives between those points are set to 0) and then reintegrates the shadow

region using the original derivatives. This is therefore equivalent to adding a constant

value c = P1 − S1 to the shadow region. While this is mathematically exact, it is

however not possible to assess the correctness of c with respect to the problem -namely,
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Figure 5.17: 1st row: Original image and illustration of coloured noise present in the shadow
region. 2nd row: shadow removal with the 2D and 1D method on a noisy image. 3rd row:
GVS image; the detected shadow mask -note the shadow under the car is undetected because
of clipping; attenuated shadows obtained with our method. 4th row: soft shadow image; the
detected shadow mask; shadow removed with our method. While the main shadow compo-
nents are attenuated, lighting aberrations can occur.

does it remove shadows?

Let us now consider what happens at the exit of the shadow region. Denote the last
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pixel visited in the shadow region by S2 and the first pixel visited after exiting by P2.

By construction, after adding c, the value of S2 becomes S2 + c. Since the derivatives

are also set to 0 when exiting the shadow region, P2 is replaced by S2 + c. Error due to

noise, or a different relation between {P1, S1} and {P2, S2} can thus be assessed by

error = P2 − (S2 + c) = P2 − (S2 + P1 − S1) (5.7)

A low error value is, however, not sufficient to validate the constant. A simple, and yet

not uncommon, example of failure is the presence of sky at the shadow boundary -see

Figure 5.19 -top left corner. Sky being a very smooth region, the associated error will

be low, even though the constant will not be correct. The issue here is that there is a

single point of failure, i.e., the constant is determined at a single location. A standard

method is to find the constant c that minimizes errors in a least square sense. Let P be

the array of pixels just outside the shadow edge and S be the array of pixels just inside

the shadow edge, such as represented in Fig. 5.18 bottom left. Let us also assume that

P and S have been sampled such that their lengths are equal. We then have

c = min
a
‖P − S + a‖2 (5.8)

In doing so, one however assumes that a (large) majority of the shadow boundary has no

coincident material edges, which is a similar assumption to the 2D integration method

previously presented. When this assumption is violated, significant errors can occur, as

illustrated in Fig. 5.19.

To find an appropriate constant, we have to look at intrinsic properties of shadow

to non-shadow transitions [RR82]. First, if there is a shadow boundary between two

pixels that have near-equal reflectance, then in RGB space:

Knon−shadow > Kshadow; K = {R,G,B} (5.9)
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Figure 5.18: Top left, the original image; top right, the evolution of the constant along the
shadow edge. Note the change in c when the transition is between sky and shadows. Bottom
left, illustration of the various parts of the shadow mask used in computing the constant.
Bottom right, the errors induced by c along the shadow edge. While they are high when there
is a region transition, the error is not significantly higher for a shadow/non-shadow constant
than for a sky/shadow constant.

Secondly, going back to the sky example we know that outdoor shadows are caused by

an object occluding sunlight. We can then further constrain c to

Rc > Gc > Bc (5.10)

Where Rc, Gc, Bc are the red, green and blue values of c and the > relations are ob-

tained by taking into account the spectra of sun and skylight as well as generic camera

sensitivities [WS82]. If one wants to remove shadows that occur in a different environ-
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Figure 5.19: Shadow free images using different methods to compute the constants.Left: the
result of using a global Min Square Error constant. Note the slight shift in blue despite the
sky-shadow transition being only a small part of the overall shadow edge. Middle: result
when the minimal error (pixel-wise) occurs in the sky-shadow transition. Right: the result of
computing a constrained constant. Both the colour balance and luminosity are very accurate.

ment (from a light source point of view), then additional constraints have to be added

to accurately determine c. While the above constraints are simple, they are necessary to

correctly evaluate c.

We now have all the elements to find c. We first use Equations (5.9) and (5.10) to

weed out implausible values. Then, taking noise into account, we select the constant

at locations where the error, equation (5.8), is minimum. Finally, in order to avoid the

single point of failure problem, we average c over the 1% of locations where the error

is minimum.

When the image admits more than one shadow region, we repeat the procedure to

find a specific constant per region. This will lead to better results than using only a

single value of c for all shadow regions. The reason is that, in removing shadows,

it is assumed that the lighting field is uniform within the shadow region. While this

assumption usually holds, shadow regions located in various parts of the image may

well have significant lighting differences. It is therefore worthwhile to treat different

regions separately.

Finally, we have to consider what happens to the shadow boundary. The main issue

in this case is that the transition between shadow and non-shadow regions is rarely
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immediate (i.e., the shadow edges are thicker than 1 pixel). Accordingly, this prevents

us from using the same constant on the shadow edges. We have tried interpolating the

constant across the boundary (for example, linearly going from 0 to c), but the results

were unsatisfactory. We therefore decided to inpaint the boundary, using the method of

Criminisi et al. [CPT04].

5.7.2 Simple Removal Results

Some results obtained with the constant method can be seen in Fig. 5.20. Despite the

complexity of some of the scenes, the shadows are correctly removed or attenuated. The

luminance levels on both sides of the (former) shadow are almost identical and the color

balance is adequate. One of the main advantages of this method, though, is its speed.

Indeed, given the shadow edges, the problem is reduced to finding a constant under 2

simple constraints. Such a task can easily be done in real time (even in MATLABtm).

This method is simple but knowledge of the environment in which the image is

taken can be necessary to correctly constrain the constant and weed out potential errors.

5.8 Conclusion

We have established a framework for robust reintegration of shadow-free images. We

have addressed the different problems of both existing 1D and 2D methods and pro-

posed solutions to their shortcomings.

We have shown that a 1D approach was more suited to the task of shadow removal

and that its results were more accurate than its 2D counterpart while still less computa-

tionally expensive. We further devised solutions for existing 1D reintegration using the

insights that shadow regions had to be closed and that the number of crossings through

the shadow edges should be limited. Additionally, we proposed a fast method to de-
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Figure 5.20: Left column: original images, middle column: the shadow mask that was used.
Right column: the results of adding a constrained constant to the shadow region. Even though
the first two images are fairly complex scenes, the shadows are either completely removed or
strongly attenuated and the rendering is realistic.

rive random Hamiltonian paths in grid graphs. We finally proposed that non-visited

shadow edge pixels do not have to be reintegrated and can simply be inpainted once the

reintegration is complete. Experiments indicate that the new method removes shadows

without visible artifacts.

We also proposed that, given some additional knowledge about the image (such
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as how shadows are cast), the shadow removal problem can be reduced to finding a

constant at the “smoothest” locations of the shadow edge under simple constraints. The

results show that this method outputs high quality images where the shadows are either

removed or strongly attenuated.



Chapter 6

Applications of Random Hamiltonian

Paths

In this chapter, we propose that the random Hamiltonian paths presented in Chapter 5

can be used with success in various path-based algorithms. Specifically, we look at the

problem of path-based image segmentation where we show that using a small number

of paths and a measure of region density, one can obtain good quality segmentations

with only first order image statistics.

Additionally, we show the random Hamiltonian paths can be incorporated in the

sieve framework [BHLA96] so that, depending on the number of paths used, one effec-

tively obtains an algorithm that lies between the 1D and 2D version of the sieve algo-

rithm. We then apply our 1.5D sieve to the problems of image denoising and texture

classification. With a reasonable number of paths, the 1.5D sieve outputs comparable

results, performance-wise, than the 2D algorithm but with the advantage of a much

simpler implementation as well as possibilities for parallelization (Matlab code for the

1.5D algorithm is provided in Appendix B).

116
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6.1 Path-Based Image Segmentation

The 2-pass raster segmenter is simple, fast and is often quoted in the literature. Un-

fortunately, it tends to oversegment images even in the presence of small amounts of

noise. We present here a generalization of this approach where we discover regions

by taking multiple random paths through an image. This approach fares better but still

over segments an image. Yet, an analysis of region density shows that the underlying

image structure can be discovered from the path-based segmentation. Indeed, the dis-

covered edges are broadly comparable to those discovered by the widely used mean

shift algorithm.

6.1.1 Introduction

From Land’s Retinex [LM71] to scale-space processing [BHLA96], path-based meth-

ods have often been used with success in image processing and computer vision. Those

paths can usually be divided in three categories: short random walks (as in [Lan77]

and [MS00]), partially complete (in the sense that they almost cover the entire image),

such as Frankle MacCann spiral path for retinex [FM83] or complete as raster paths

for segmentation [BB82]. Most examples of complete paths are instances of the more

general class of Hamiltonian paths, whose definition is “A path in a graph such that

every vertex is visited once and once only” [Bol79] (or, in terms of images, we visit

each pixel once and visit all pixels in the image). We here take the results presented in

Chapter 5 for the generation of random Hamiltonian paths.

The problem of image segmentation has been studied for a long time and has spawned

a wide variety of approaches ( [MM00], [CM02] and [NB93] among others). The best

performing algorithms currently make use of a combination of colour, texture and scale

features and usually have many parameters that can be adjusted for optimum segmen-

tation. As a result, many of these algorithms are either difficult to implement and/or
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computationally expensive to use. One of our goals here is to develop a segmenta-

tion algorithm that is broadly comparable to antecedent methods but, due to its simple

path-based framework, is simpler and easier to implement.

We first introduce the 2-pass raster segmentation commonly cited in the literature.

We then show how to use multiple Hamiltonian paths and simple first order image

statistics on colour channels calculated along a path to group similar pixels.

After a single Hamiltonian path through the image there are many line like seg-

mented structures (as oppose to desired regions). We group these linear structures and

discover arbitrarily shaped regions by repeating our segmentation along different paths

where now we group together the linear structures. After a small number of path seg-

mentations we can discover arbitrarily shaped regions. We provide a detailed discussion

of the convergence of our method.

Section 6.1.2 presents the standard two pass path based raster segmentation. In

section 6.1.3 we look at how path based segmentation works in experiments and this

allows us to elaborate on the basic algorithm. Results on real images are presented in

section 6.1.4 for our path based approach and for the widely used mean shift algorithm.

For the images tested both algorithms provided broadly similar performance, with the

former being delivered much more quickly.

6.1.2 Background

Raster Segmentation (Sequential Labelling)

Sequential labelling is a technique used in computer vision for efficient segmentation

of images [BB82]. Two orthogonal raster paths (such as the ones shown in Fig. 6.1)

are used sequentially to connect pixels belonging to a same region. This method, first

based on binary images, where determining the connectivity of pixels is straightforward

[Gra71] was extended to encompass grayscale and colour images in [NB93].
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Figure 6.1: The 2 orthogonal raster paths used in the original sequential labelling method.

The sequential algorithm proceed as follows: the image is examined according to

the paths shown in Fig. 6.1. If neighboring pixels are connected, they are then assigned

the same label. When a pixel can be connected to more than one of its neighbors, the

labels are considered to be equivalent (and are therefore merged).

To determine whether neighboring pixels are similar we will use Nayar and Bolle’s

reflectance ratio criterion [NB93].

Ia − Ib
Ia + Ib

≤ θ (6.1)

This reflectance ratio, taken for image pixels a and b has the advantage that, for grey

scale, it is independent of intensity. And, if computed on R, G, and B separately the

triplet of ratios is independent of illumination [NB93]. And, so, supports segmentations

which are independent of the lighting conditions.

6.1.3 Segmenting Images

To segment images, we use the same framework as the sequential labelling of [NB93].

However, instead of using two orthogonal raster paths, we recursively apply different
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random Hamiltonian paths.

Since the random Hamiltonian paths algorithm can generate a large number of ran-

dom paths, we propose that can segment images with more accuracy than the 2-pass

algorithm: we can use multiple paths to discover region connectivity. In the 2-pass

approach, to get large regions one needs to be “optimistic” about the underlying image

structure and so use a fairly large threshold to determine pixel (and hence region) simi-

larity. With multiple paths we can be “pessimistic” and use a smaller threshold since we

are secure in the knowledge that we can joint pixels in multiple different ways. Using a

large number of paths results in a area-like processing of the image, despite it not being

explicitly defined in the segmentation algorithm.

Finally, we note that while the paths can be efficiently computed, they can also be

pre-computed for a certain image size. Thus the algorithm cost is the number of pixels

multiplied by the number of paths. Typically, the latter is small and so the algorithm is

very fast.

Let us now consider how images are segmented. Before proceeding further we are

interested in the plausibility of our approach. If we take an image with 2 regions that

are hard to segment can we automatically find the segmentation?

Convergence of the Algorithm

Let us create an image that consists of a double spiral. The two spirals are one pixel

wide, while the image itself is of size 256 × 256, as illustrated in Fig. 6.2a. The first

step in sequential labelling is to label all pixels in the image as belonging to a different

region; here we have 256x256 pixels so we have 65536 different regions. We then

recursively use the different pre-computed paths to process the image, using the colour

reflectance-ratio merging criterion [NB93], i.e., two labels a and b are equivalent if

max{Ra −Rb

Ra +Rb

,
Ga −Gb

Ga +Gb

,
Ba −Bb

Ba +Bb

} ≤ θ (6.2)



CHAPTER 6. APPLICATIONS OF RANDOM HAMILTONIAN PATHS 121

Where we define the value of θ to be 0.035. This value has been found through experi-

mentation and is the same value throughout all the results presented in this chapter.

Figure 6.2: (a): The spiral figure used in the convergence experiment. (b): The curve show-
ing the actual convergence.

If the structure of the different paths is random enough, and if the set of paths is

complete with respect to the image size, then the segmentation should converge towards

two distinct labels. Fig. 6.2b displays the number of distinct labels (i.e., regions) after

each path. After 29 paths, the algorithm has converged to two distinct regions, each

of them containing one spiral. Due to the random nature of the paths, we repeated

this experiment 50 times. The mean number of paths of convergence was 26 and the

highest number was 31. From this example, it can be inferred that since real images

generally have much larger regions, the algorithm should then converge with less paths.

For equivalently sized images, we have used 15 different paths, since the improvement

in quality beyond them was not significant.

Moreover, it is simple matter to prove convergence in general. Consider an image

with distinct regions, where each region can be discriminated from one another using
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the ratio test. The segmentation fails if after n iterations we have two adjacent pixels

that should belong to the same region but are labelled differently. By assumption, these

adjacent pixels satisfy the ratio criterion and so if we considered a path that joined these

pixels together then these pixels (and their associated regions) would be merged. Since

our paths are generated randomly this must happen given enough paths.

Segmentation Experiment on a real image

We are now interested in the detail of our algorithm: how will it perform on a real

image?

Top left of Fig. 6.3 shows a simple image with well defined colour regions. Let us

now consider what happens when we recursively apply our path-based method using

the ratio criterion. Fig. 6.3 also shows the evolution of the segmentation for an image

(each shade of grey is another label). These different steps picture how the segmenta-

tion converges towards stability, usually after 15 steps or so. While the convergence is

fast, as shown in Fig. 6.4, it is really the steps between paths number 10 and 15 that

effectively shape the segmentation.

The method chosen to represent the segmentation, however, is one based on re-

gions density. The underlying assumption of this method is that a segmented image is

composed of several regions within which the pixels have the same “label”. The re-

gion density is obtained by sliding a small n × n window over the image (in all our

experiments, n = 3). The number of different regions (or labels) within this window

expresses the region density for the center pixel. If we look in a small window and there

is a single underlying region then we say this window has density one. If there are two

regions then we have density two and so a small edge, up to a region density of nine

(the maximal value) where all pixels within the window belong to a different region.

By definition, all pixels within a region have the same value (label). A region density

higher than one is therefore indicative of the presence of an edge. Additionally, since
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Figure 6.3: From left to right and top to bottom: The original image and the segmentations
after 1, 5, 10 and 15 paths respectively.

the segmentation is based on colour ratios, we can encounter very high region densities

in case of fast-changing reflectances, such as in grass or vegetation regions. However,

most of the pixels belonging to such regions will appear solid white on the density map

and edges can also therefore be extrapolated. The region density map after various

number of paths is shown in Fig. 6.5.

We can use this approach because, in effect, noise is not a significant factor in our

edge maps. An illustration can be seen in Fig. 6.6, where the region density of the

original image is shown on the left and the right image is the edges obtained with our

method. The original image contains significant noise, but the use of several random

paths in effect denoised the image while preserving edge information.
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Figure 6.4: The speed of convergence for the image shown in Fig. 6.3.

6.1.4 Results

We first compare our results with the ones obtained using the 2-pass raster scan method.

From the convergence curves previously shown, we see that the main reduction in the

number of regions occurs within the first step. We might therefore expect both methods

to deliver similar number of regions and, using the density approach described above,

to exhibit similar edge representations. The results are displayed in Fig. 6.7. While the

strong edges of the image are present in both results, we also see that the edge density

map for the raster segmentation is much noisier. And, this shows that it has not merged

regions as effectively as our multiple path approach.

Fig. 6.8 show results obtained with a variety of images. The first row contains the

original images and the second one edges obtained with the 2-pass raster approach. The

third row are results obtained with our method; the fourth row consists in segmentations

obtained with the meanshift algorithm [CM02] where standard parameters were used.

From these results, two main aspects can be observed. The first one is that, as
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Figure 6.5: From left to right and top to bottom: The original image and the segmentations
after 1 (all white since the first step is to label all pixels differently), 2, 5, 10 and 15 paths
respectively.

Figure 6.6: Left: region density of the original image. Right: region density of the segmented
image.

previously thought, the results from our algorithm are an improvement over the origi-

nal sequential labelling formulation problem. The second one, comparing our results

to meanshift, is that while our algorithm is intrinsically much simpler, the results are
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Figure 6.7: Left: region density of the raster segmented image. Right: region density of the
segmented image.

broadly comparable. Both the 2-pass approach and our method also contain large veg-

etation regions compared to the meanshift algorithm. Since those regions are rapidly

changing reflectance-wise, their underlying region density will be high. Filtering the

region density map with a simple point-based high pass filter allow us to extract edges

for both black (low density) and white (high density) regions. The resulting edges there-

fore oversegment some parts of the image, while undersegmenting others. A drawback,

however, is the presence of noisy regions, explained by the fact that we only use local

colour information to merge different labels/regions.

6.1.5 Conclusion

Up to this point, only first order statistics have been used in our segmentation frame-

work. The obtained edges are, while accurate, sometimes either too thick or too noisy

compared to the size of segmented regions. In [NB93], Nayar and Bolle discarded noisy

or small regions in order to focus only on “valid” regions. Here, we however would like

to obtain a full segmentation of the image. To improve current segmentations, one will

have to look at higher order statistics, such as the rate of changes, in order to accurately

detect and segment textures without adding too much complexity.
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Figure 6.8: 1st row: Original images, 2nd row: edges obtained with the sequential labelling
method, 3rd row: edges obtained with our method, 4th row: edges obtained with the mean-
shift algorithm.

6.2 The 1.5D Sieve

In this section we present a Hamiltonian path-based version of the sieve algorithm

[JPR95, BHLA96]. Our method is simple to implement and can be made to behave

like either the 1D or 2D sieve algorithm, depending on the number of paths used. Ex-

periments indicate its performance for noise removal and texture analysis to be in line
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with the original sieve formulation.

6.2.1 Background

The idea behind the sieve algorithm is to use morphological filters to remove a signal

extrema at different scales. The filters used are successive max and min operators that

are applied on windows of different sizes (the size of the window corresponds to the

scale). The sieve output is causal, edges vanish as the scale increases and no new image

structure is introduced.

In the field of image processing, sieves can be used in either 1D, where the im-

age is processed along a path [JPR95], or 2D, where the processing is done area-

wise [BHLA96]. Sieves have been successfully applied, applications including image

denoising [RAJ97] and texture analysis [Sou06] where it was shown that the algorithm

of choice (1D or 2D) depended on the type of texture analyzed, namely on whether

the texture set is rotated or not. The 2D version of the algorithm is more robust and

generally performs better, but is challenging to implement.

We propose to use random Hamiltonian cycles to develop an algorithm that is equiv-

alent to the 1D sieve when a single cycle is used and that is equivalent to the 2D sieve

when all potential cycles over an image are used. In general, we use a small number of

different random cycles (say between 10 and 20 depending on the size of the image and

the desired scale) and therefore find ourselves somewhere between the 1D and the 2D

case. To generate the cycles, we use the method presented in Chapter 5 that has a linear

(O(N)) complexity, where N is the number of pixels in the image.
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6.2.2 The Algorithm

The 1D sieve output of a signal X at a scale S is calculated in two passes. In each pass,

maxima and minima of length ≤ S are respectively detected. The passes are:

Ytmp = max
f

(min
b

(X)) (6.3)

Y = min
f

(max
b

(Ytmp)) (6.4)

where f and b mean that for each pixel, the operation is done on a respectively forward

or backward centered window of size S + 1. The proceeding of the 1D sieve algorithm

is shown in Fig. 6.9.

Figure 6.9: A 1D signal (first row) and the result of the sieve algorithm at scale one after
each of the passes described in equations (6.3) and (6.4)(third and fifth row)

The 2D sieve use a more complex graph connectivity-based approach where, for a

2D signal, the extrema are detected if their connected area is≤ S. This process involves

complicated “bookkeeping” because extrema can have complicated shapes -e.g. a “Q”-

shaped region with 100 pixels is an extremum when S = 100. The 2D algorithm is
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illustrated in Fig. 6.10.

Figure 6.10: A synthetic image (left) and the output of the 2D sieve algorithm after the
maxmin (middle) and minmax (right) steps.

In our approach, we first create N random Hamiltonian cycles over the image. We

then create our 1.5D sieve in 4 steps:

Y i
tmp = max

f
(min

b
(X)) (6.5)

Ytmp = min
i

(Y i
tmp) (6.6)

Y i = min
f

(max
b

(Ytmp)) (6.7)

Y = max
i

(Y i) (6.8)

where Y i and Y i
tmp are sieve outputs for path i and where mini and maxi represent

selecting the minimum (or maximum) value for each image pixel over all the paths.

The addition of the two extra steps, equations (6.6) and (6.8) is important because it

is conservative. These steps indicate that if a region is deemed to be an extremum

by all paths but one, then it will not be considered an extremum for the algorithm.

This conservative estimation is shown in Fig. 6.11. We note that the algorithm can

then be parallelized, since the steps described by equations (6.5) and (6.7) can be done

separately for each path, combining their outputs at the end.



CHAPTER 6. APPLICATIONS OF RANDOM HAMILTONIAN PATHS 131

Figure 6.11: Proceeding of the 1.5D sieve algorithm. Each path is used in a 1D sieve
framework, but the outcome of all the paths is then assessed conservatively. The top-left
image shows a synthetic example of an image region traversed by three paths. The first two
admit an extremum at a scale of the height of the white rectangle and their processing results
in the top-right and bottom-left images. The third path however does not admit an extremum
at that scale. Its result, bottom-right, is therefore also the output of the 1.5D sieve algorithm.

6.2.3 Equivalence of the 1.5D to the 1D and 2D sieve

In the 1.5D algorithm, by definition, when one path is used its behavior is equivalent to

the 1D sieve.

For the 2D case, we have to look at the behavior at the limit. Let I be the image

and I2 be the result of upsampling I along both rows and columns. From Chapter 5,

we know that every partition R of I is transformed in an equivalent region R2 in I2 and

that R2 admits an Hamiltonian cycle. If we define R to be the complement of R, it then

follows that R2 also admits an Hamiltonian cycle.

Graph theory tells us that, on grid graphs, two disjoint, adjacent Hamiltonian cycles
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can be merged in a single one. Thus we deduce that there exists at least a cycle over

I2 such that the whole R2 will be explored sequentially, allowing one to determine its

precise scale (area) with our algorithm. The method to create Hamiltonian paths also

guarantees that all possible cycles can be found. It therefore follows that if we generate

all possible cycles on I2, we then will be able to exactly find the scale of every region,

thus making our algorithm the equivalent of the 2D sieve.

In practice, however, the number of possible paths, Nmax, is extremely large and we

therefore choose N paths with 1 < N � Nmax, which makes the algorithm behave

in between the 1D and 2D sieve. In fact, the possible number of paths our algorithm

can generate is the same as the number of possible spanning trees on the downsampled

graphs. In [Wu77], it has been shown that a square graph with M vertices admitted

e1.16M different spanning trees, close enough to infinity considering the size of typical

images (Matlab actually considers it to be infinite for a 128× 128 image).

6.2.4 Experiments

In this section, we evaluate the performance of the 1.5D sieve algorithm. Fig. 6.12

shows the output of the 1D, 2D and 1.5D sieves for different scales.

We now look at the robustness of the algorithm in the presence of noise. To do so,

we use the framework of Harvey et al. [RAJ97] where the robustness of scale space

algorithms was evaluated in the presence of Gaussian and Impulse noise. In this ex-

periment, we compare the robustness of the 1.5D sieve with the original 2D algorithm

from [BHLA96].

The images used in this test, shown in Fig. 6.13 are composed of a grayscale disc

of different amplitudes cast on a 100× 100 uniform square of amplitude 112. To these

images is added either uncorrelated Gaussian noise (µ = 0, σ = 24) or, alternatively,

Impulse noise, where pixels are replaced with a random value in the range [0,255] with

a noise density of 0.2.
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Figure 6.12: The results of sieving an image with the 1D (first column), 1.5D (with 5, 10 and
30 paths) and 2D (last column) sieves at various scales. The size of the image is 64× 64; for
the 1.5D sieve, we see that the more paths used, the closer the results are to the 2D algorithm

The experiment then consists in finding out the position and the scale of the central

disc. To do so, one sieves the image at all possible scales. The scale at which the largest

area is detected is assumed to be the scale of the disc (which is true in the noiseless

case). The disc center is then assumed to be the center of mass of the detected area.
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Figure 6.13: The target image used in the robustness experiment (left); corrupted with Gaus-
sian noise (middle) and Impulsive noise (right)

Gaussian Noise 2D 1.5D
σx 0.280 0.270
σy 0.243 0.22
σs 55 48

Impulsive Noise 2D 1.5D
σx 0.0425 0.046
σy 0.0416 0.0472
σs 3.91 4.01

Table 6.1: Standard deviations of estimates in Gaussian (G) and Impulsive (I) noise for the
2D sieve and the 1.5D sieve (using 30 paths).

Repeating this experiment over 150 instances of noise allow us to calculate the standard

deviation of the estimated circle position, σx and σy as well as the scale, σs. The smaller

this standard deviation, the more robust the algorithm in the presence of noise. Table 6.1

shows the results for both the 2D sieve algorithm and the 1.5D sieve using 30 paths. We

see that the difference between the 2 algorithms is small and thus, the 1.5D algorithm

is almost as robust as the 2D sieve.

Finally, we want to assess how our modified sieve algorithm fares in texture classi-

fication. A comprehensive review of state of the art algorithms done in [Sou06] showed

that, for the Outex TC 00000 and Outex TC 00010 test suites [Out,OMP+02], the best

performing algorithms were the 1D and 2D sieve respectively. The test suite TC 00000

is rotationally invariant and uses leave-out half cross validation (in all the Outex test
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suites, the training and testing sets are provided). The TC 00010 on the other hand is

used to test rotation invariance. The training set consists of 480 texture from 24 classes

imaged at a fixed orientation of 0o. The testing set consist in 3840 images of the same

24 classes but the textures are at rotations of 5o, 10o, 15o, 30o, 45o, 60o, 75o and 90o.

It follows that, for the 1D sieve, one path will not suffice to discriminate between

textures. For this test, the 1D sieve is actually composed of six different raster-type

paths oriented at every 15o. Examples of the texture sets can be seen in Fig. 6.14.

Figure 6.14: Example of textures from the Outex TC 00000 suite (first row) and a texture
under various orientation in the Outex TC 00010 suite (second row).

The texture analysis is done using scale granularity. For each algorithm: 1D, 1.5D

and 2D sieve, the texture images are sieved at scales 1, 2, 5, 13 and 30. From these six

images (the original one and the five sieved images), we generate granularity images by

taking the differences of two consecutive scales: i.e., original and scale one, scale one

and scale two, scale two and scale five, etc. On these five granularity images, the first

three moments (mean, standard deviation and skewness) are calculated, thus resulting in

a 15-dimensional feature vector. In the 1D case, since there are six independent paths,

the feature vector will have 90 entries. A feature vector is created for each image in the

training set. Then, for each test image, its feature vector is calculated and its Euclidian
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Outex 000000 Success Rate vector length
1D 0.998 90

1.5D 0.99 15
2D 0.95 15

Outex 000010 Success Rate vector length
1D 0.718 90

1.5D 0.902 15
2D 0.943 15

Table 6.2: Recognition rates for both the rotationally invariant and variant Outex sets with
1D, 1.5D and 2D sieves.

distance to the training data is used to determine to which class the test image belongs.

Since the textures are fairly strongly oriented, we use “masks” to guide the paths.

Specifically, we create gradient images that will be the input of the random Hamiltonian

paths algorithm. As a result, the paths will loosely adopt a given orientation. In these

experiments, we will use 24 paths based on 12 rotations of the mask at regular angles

(we create 2 paths per angle). Some orientations of the masks are shown in Fig. 6.15.

Figure 6.15: Various orientations of masks used in the creation of random Hamiltonian
paths.

Using these paths, we form the output of our 1.5D sieve algorithm and thus have a

15-dimensional feature vector (the same size than the 2D sieve) that we use to classify

textures. The Outex sets have defined training and testing procedures that we follow.

The results, Table 6.2, illustrate that the 1.5D sieve algorithm performs “in between”

the 1D and 2D methods and display a generally good performance.
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6.2.5 Conclusion

We have shown that multiple random Hamiltonian paths could be used in the sieve

framework. Using multiple paths and adopting a conservative approach, a 1.5D sieve

algorithm (named as such because it behaves as either the 1D or 2D sieve in its limiting

case) was developed.

We showed that this simpler version of the algorithm was as robust as the 2D sieve

in the presence of noise and that a similar performance to state of the art algorithms

could be achieved in texture classification.

We note that the 2D sieve algorithm is intrinsically rotationally invariant, which

is not the case of either the 1D or 1.5D algorithms, invariance that explains its better

performance in the rotation test. We point out that it is possible to create a path-based

1D sieve that would be rotation invariant, creating a minimum spanning tree using the

gradients of the image as an input. One then creates a different path for each test image,

thus having a rotationally invariant metric but loosing its generality (since it would

mostly be an ad-hoc construction for the test set).



Chapter 7

Conclusion and Future Work

In this thesis, we have investigated the problem of interaction between light and Lam-

bertian surfaces; our research has focused on estimating, detecting and removing illu-

minants.

Starting from the chromagenic theory, we have performed a detailed error analysis

of the original algorithm and shown that bright, achromatic RGBs yielded more accurate

illuminant estimations than darker more saturated ones. This lead us to propose the

bright-chromagenic algorithm for illuminant estimation. Through extensive testing on

both synthetic and real data, we have shown that the bright chromagenic algorithm

remedies the weaknesses of the original chromagenic formulation, notably by removing

the need for registered images, and that it performed significantly better than current

state of the art illuminant estimation algorithms.

We have further extended the chromagenic framework in Chapter 4 to show that

one can change the scope of the algorithm from illuminant estimation to illuminant

detection. Instead of finding a single best fit for the entire image, pixels (or regions) are

labelled with one illuminant from a subset of two or three. Constraining the problem

in that way allows us to obtain accurate illuminant masks with good accuracy without

requiring the illuminants to be estimated.

Chapter 5 focused on the removal of shadows in images. We provided a framework
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for robust shadow removal based on 1-dimensional reintegration methods and showed

that is provides better results than 2D integration methods. We also proposed that, if the

conditions of shadow formations are known, shadows could be attenuated or removed

by simply adding them a constant found by constrained minimization.

To perform 1D shadow removal we have, in Chapter 5, developed an algorithm

that produces random Hamiltonian paths on graphs that are complete by downsampling

in a linear time. We use a maze-based implementation that produces such paths in

a short time (0.5 seconds for a 1024 × 1024 image). In Chapter 6, we showed that

Hamiltonian paths could be used in different applications, where they could provide

simpler frameworks or improved results.

We are now at the end of this thesis, and may ask ourselves where this work can be

taken. There are a number of ways the work presented here can be extended and we

would like to show some possibilities.

Concerning illuminant estimation: one could manufacture optimal filter and sen-

sors, which would increase the algorithm accuracy even further. The main problem of

the chromagenic theory, however, is that it is based on having two images of each scene

at our disposal. A possible improvement is to obtain these images at the same time,

either through a “chromagenic camera” (with 2 CCDs) or, through a special filter that

would produce an image composed in parts of a filtered and unfiltered response (for in-

stance a filter whose left half is neutral and right half is yellow). While there are optical

conditions to consider, our own eyes actually possess such a filter: the macular pig-

ment, which covers only part of the retina. Replicating this would allow chromagenic

illuminant estimation to be performed on a single image.

Illuminant detection can be improved upon as well. For now, we are able to detect

different illuminants in an image but one could extend that further. Consider an image,

which, we surmise, has two different illuminants. Once these illuminants are found,

we can look into each of the two classes and suppose that each of them also contains
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two illuminants. In this event, the differences are smaller but they still exist and are

most likely caused by different aspects such as mutual illuminations, specularities, etc.

Another possibility is to interpret the illuminant maps not as binary or ternary as we

have done here but as continuous, i.e., creating an alpha-mask of illumination. The

success of these extended scheme, however, appears to be dependant in either having

perfectly registered images, or being able to distinguish between registration errors and

illumination changes.

Finally, as we have shown in Chapter 6, multiple random Hamiltonian paths can

be used in various applications. One can therefore explore the possibilities offered by

these paths in both path-based applications and 2-dimensional frameworks. Given the

method used to created the paths, one can also make them “adaptive”, since their struc-

ture follows the spanning tree one, spanning tree that can be obtained using adequate

weighting schemes.



Appendix A

A Maze Implementation of
Hamiltonian Paths

In this appendix, we show a fast implementation of the random Hamiltonian paths using

a maze framework.

To illustrate this analogy, consider Fig. A.1, where a schematic image is represented

as a graph, over which a spanning tree is created. Reforming the schematic image based

on the spanning tree, one sees that this image can effectively be considered as a maze.

In fact, it is known [Maz02] that creating a spanning tree over a graph yields a perfect

maze: a maze such that there is a single path between two given cells.

With this in mind, we create random Hamiltonian paths by first creating a perfect

maze over the downsampled image. The maze is then upsampled and, starting from an

arbitrary location, one “walks” around the upsampled maze keeping its hand (the left

one in this case) on the walls. Doing so, one will walk the entire maze, visiting all cells

in turn before ending up at the starting point; the order of visited pixels is therefore

an Hamiltonian cycle over the original sized image. Fig. A.2 shows the framework of

the algorithm, using screen shots from our program. We would like to acknowledge

the help of Fabien Ezber for his deep knowledge of efficient programming and memory

management.
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Figure A.1: The relationship between image, graph, spanning tree and maze.

The performance of our implementation is shown in Fig. A.3 where the time taken

to obtain an Hamiltonian cycle is plotted versus the size of the graph (the total number

of pixels in the image).

We note that storing a path takes an equivalent amount of space as the spanning tree,

i.e., one quarter of the image size. In applications that require a large number of paths be

stored that might, however, be too memory consuming. If one accepts that the paths can

have a slightly less random structure, one can upsample the maze by a larger factor than

two. In that case, the amount of space needed for storing the relevant information can

be reduced to suit one’s needs. An illustration of this possibility is shown in Fig. A.4,

where one can see that an Hamiltonian path (instead of a cycle) is obtained.
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Figure A.2: Screen shots of our algorithm used to generate random Hamiltonian paths. We
first create a perfect maze and upsample it. Finally, the maze is walked through using the
“keeping a hand on the wall” technique. The blue arrows indicate the direction taken at each
pixel. The starting point is at the top-left corner and the ending point is symbolized by the
red dot.
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Figure A.3: The performance of our algorithm in seconds versus the number of pixels in the
image. A 1024× 1024 path can be obtained in 0.53 seconds.
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Figure A.4: A graph and a path obtained by upsampling the maze by a factor of 4. In that
case, the algorithm does not output a cycle but a path.



Appendix B

1.5D Sieve Code

In this appendix, we show the Matlab code used to process the image according to our
1.5D sieve algorithm. We do not here make optimality claims about the code. Instead,
we want to illustrate that contrarily to the 2D sieve algorithm, the 1.5D version can be
easily coded.

function S_out=sieve_filter_split(path,I,scale_max);

%path is a matrix containing all the desired paths

[nb_paths, path_length]=size(path);

[r,c]=size(I);

first_pass=zeros(nb_paths,r*c); %%%the max-min direction%%%

%%all paths processed independently => can be parallelized

for i=1:nb_paths,

%processing the image along the ith path

I=I(path(i,:));

M1=[I;I(2:path_length) I(path_length)]; %scale 1

m1=max(M1); %scale 1

M2=[m1;m1(1) m1(1:path_length-1)]; %scale 1

m2=min(M2); %scale 1

for scale_level=2:scale_max,

vect_scale=m2(path_length)*ones(scale_level+1,1);

%processing the window
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M1=fliplr(toeplitz(vect_scale,fliplr(m2)));

m1=max(M1);

vect_scale=m1(1)*ones(scale_level+1,1);

M2=toeplitz(vect_scale,m1);

m2=min(M2);

end

%reordering the results from different paths

results_tmp=[path(i,:); m2]’;

results_tmp=sortrows(results_tmp,1);

first_pass(i,:)=results_tmp(:,2)’;

end

%equation (6.6): being conservative

first_pass_outcome=min(first_pass);

%preparing the min-max direction

second_pass=zeros(nb_paths,path_length);

%%all paths processed independently => can be parallelized

for i=1:nb_paths,

%we start with the results from max-min

m4=first_pass_outcome(path(i,:));

M3=[m4;m4(2:path_length) m4(path_length)]; %scale 1

m3=min(M3); %scale 1

M4=[m3;m3(1) m3(1:path_length-1)]; %scale 1

m4=max(M4); %scale 1

for scale_level=2:scale_max,

vect_scale=m4(path_length)*ones(scale_level+1,1);

M3=fliplr(toeplitz(vect_scale,fliplr(m4)));

m3=min(M3);

vect_scale=m3(1)*ones(scale_level+1,1);

M4=toeplitz(vect_scale,m3);

m4=max(M4);

end

results_tmp=[path(i,:); m4]’;

results_tmp=sortrows(results_tmp,1);
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second_pass(i,:)=results_tmp(:,2)’;

end

% equation (6.8), being conservative

second_pass_outcome=max(second_pass);

I_sieve=reshape(second_pass_outcome,r,c);

%outcome of the sieve at the chosen scale

S_out=I_sieve;
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