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Abstract — Memory colors refer to the color of specific image regions that have the essential attribute
of being perceived in a consistent manner by human observers. In color correction – or rendering –
tasks, this consistency implies that they have to be faithfully reproduced; their importance, in that
respect, is greater than that for other regions in an image. There are various schemes and attributes to
detect memory colors, but the preferred method remains to segment the images into meaningful
regions, a task for which many algorithms exist. Memory-color regions are not, however, similar in
their attributes. Significant variations in shape, size, and texture exist. As such, it is unclear whether
a single segmentation algorithm is the most adapted for all of these classes. By using a large database
of real-world images, class-specific geometrical features, eigenregions, were calculated. They can be
used to evaluate how well an algorithm is adapted to segment a given class. A measure of localization
of memory colors is given. The performance of class-specific eigenregions were compared to general
ones in the task of memory-color-region classification and it was observed that they provide a notice-
able improvement in classification rates.
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1 Introduction
By segmenting an image, one effectively decomposes it into
a number of disjoint regions. These regions can in turn be
analyzed independently and classified according to their
content. The various regions and classes that are present in
natural images are, however, not of equal importance. Some
of the most important ones are the so-called memory colors:
blue sky, green vegetation, and skin tones.10 Human observers
locate these classes in very specific areas of the color
gamut.2,20 Thus, many color-rendering and correction algo-
rithms specifically try to map these colors to the correct val-
ues. As a result, detecting these regions has been, and still
is, a very active area of research.

Detection algorithms generally rely on many different
features to classify memory colors: approaches include the
use of shape, size, position, color, and texture.4,21,13,3 Prior
to being detected, however, images have to be segmented
into meaningful regions. How meaningful a region is depends
on the intended application of the segmentation, or image,
but most segmentation evaluation methods are predicated
on the ideal that all regions are of equal importance. As
such, the whole segmentation maps are compared to manu-
ally segmented images irrespectively of the image’s con-
tent.19

This work addresses the problem of class-specific seg-
mentation evaluation, where only certain regions are of
importance rather than the entire image as well as the local-
ization of memory color regions within natural images. Our
framework builds on the eigenregions proposed by Fredem-
bach et al.,11 which are principal component analysis (PCA)

based geometrical features that encompass information
about the shape, size, and position of regions. The central
idea is to calculate class-specific eigenregions, i.e., obtaining
different geometrical descriptors for each class. The consid-
ered classes have to be reasonably localized across images,
i.e., they should usually be found in similar position within
images. The classes we consider here (blue sky, green vege-
tation, and skin tones) generally fulfil, due to physics or pho-
tographic composition, this localization criterion.

An objective ground truth for our experiments is obtained
by manually segmenting 900 images, 300 per class. These
accurate binary segmentation maps are used to calculate
class-specific eigenregions that are subsequently compared
to the ones resulting from automatic segmentation of the
same images. Four segmentation algorithms that exploit
very different information are compared: Meanshift (den-
sity estimation process),5 Felzenswalb and Huttenlocher
(minimum spanning trees),8 k-means (Euclidian distances
between clusters),1 and edgeflow (Gabor filter banks).14

The comparison is based on the idea that if manual
human segmentation is available for a given class, then its N
eigenregions provide a reference basis in N-dimension. An
algorithm-based segmentation of the same data will, how-
ever, provide a different basis in the N-dimension. Measur-
ing the distance between these bases effectively quantifies
the performance of the algorithm relative to how a set of
people would segment it.

The results show a strong class dependency in both the
accuracy of segmentation and shape of the eigenregions.
The proposed framework can thus be used to quantify, for a
given class, the distance between automatic segmentation
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and human-generated segmentations, the distance between
any two segmentation algorithms, or the influence of input
parameters for a given method. In addition, it yields class-
specific features that can be used for classification tasks.

2 Segmentation evaluation
When attempting to classify regions, one usually starts by
segmenting the image. Because the performance of the
region classifier strongly depends on the accuracy of the
segmentation, it is often necessary to evaluate the perform-
ance of the segmentation algorithm. Such assessment on
class-specific data is, however, scarce. In a more global set-
ting, assessing the performance of automatic segmentation
is not a new concern and several approaches have been pre-
sented that yield a measure of “closeness” or “agreement”
with human segmentation. Martin et al.17 first proposed the
use of region consistency over a database of human-seg-
mented images16 to evaluate the performance of automatic
segmentation algorithms. These measures of segmentation
consistency turned out to be biased toward over- or under-
segmentation, so in Ref. 15 the use of precision and recall
on region boundaries was suggested instead. A benchmark
of several segmentation algorithms based on precision and
recall was published in Ref. 6. A different, region-based
consistency measure was presented by Ge et al. in Ref. 12.
Their measure also depends on the overlap between auto-
matic and human segmentations, but it was computed on
images that contained only two regions: a salient object and
its background. Overlap was measured after deciding (based
on the human segmentation) which subset of regions in the
automatic segmentation best matched any given human
region. More recently, Unnikrishnan et al.19 presented a
benchmark based on the Normalized Probabilistic Rand
index. This measure compares segmentations through a soft
weighting of pixel pairs that depends on the variability of the
ground truth data. Other measures of segmentation consis-
tency have been proposed in Refs. 9, 18, and 7. A concise
survey of these measures is provided in Ref. 19.

Despite their potential usefulness, each of the above
methods for evaluation has its own limitations. First of all,
they are global methods that measure the quality of the
entire segmentation (all regions are given equal weight,
irrespectively of their content); we are here concerned
about specific classes. Boundary-based methods will give
good scores to under-segmented images, in which two or
more distinct (and possibly large) image regions are con-
nected through narrow “leaks.” Since most of the boundary
is recovered, boundary matching may falsely indicate that
the segmentation is accurate. Methods based on overlap
such as Ge et al. can be biased toward high scores by over-
segmenting. In addition, this method assumes some form of
expert is available to decide which of the over-segmented
regions should be merged together to match human seg-
mentation. The benchmark by Unnikrishnan et al.19 pro-
vides interesting insights about the performance of

segmentation methods on natural images; however, the
question remains of whether particular algorithms are better
for specific segmentation tasks, which is one of the funda-
mental problems addressed in this paper.

3 Eigenregions
Eigenregions were first proposed in Ref. 11 as PCA-based
features for image classification. They were obtained by first
segmenting a great number of images into regions whose
“coverage” was assessed. Working on region coverage allows
eigenregions to encompass geometrical attributes, such as
shape, size, and position. For the analysis to be tractable, the
segmentations are performed on reduced-size images,
which is not a concern since downsampling does not alter a
region’s location or coverage. An illustration of this down-
sampling procedure is shown in Fig. 1.

Let I be an input image of size n × m, R be a region of
I, and p a pixel in the image. For every region R, we have
that

(1)

Let (i, j) be the index of a pixel in the reduced-size
image Id and let d1 = n/nd and d2 = m/md be the downsam-
pling factors along the rows and columns of I, respectively.
I and Id are related by

(2)

The pixel (i, j) of Id is assigned the value of the propor-
tion of white pixels contained within the corresponding
d1 × d2 sized block in the original binary image.

These downsampled images are the input to the PCA
algorithm. In effect, each one is a N dimension feature vec-
tor, where N = ndmd. If we have M regions describing a
given class, then X is the PCA input data matrix (of size N ×
M) and we can write22

(3)

(4)

C = YYT, (5)
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FIGURE 1 — Left: an image from our database with a blue-sky region;
middle: a binary representation of the sky region’s coverage in the
original image size; right: the downsampling of the binary image to 6 ×
8 pixels, which is used to perform PCA. The gray-scale values represent
the relative coverage of the region at a given location: from 0% (black)
to 100% (white).
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where C can then be expressed, using singular value decom-
position, as C = V Λ VT, where V is the eigenvector matrix
and Λ is the diagonal eigenvalue matrix of C.

The two important elements are the eigenvector and
eigenvalues matrices: V and Λ. V defines the new basis vec-
tors, i.e., their orientation, while Λ expresses the relative
importance of each basis vector in reconstructing the data.
The key insight is that if we are provided with a reference
basis, we can calculate its similarity (i.e., distance) to any
other basis in a space of identical dimension. In our frame-
work, the reference basis is the eigenregions obtained by
human segmentation, while the candidate bases are the
eigenregions obtained via automatic segmentation algo-
rithms.

We first note that if two vectors have many common
components (that is, two regions’ coverage is almost identi-
cal), the angle they form is going to be small, i.e., the points
they define will be close in space. This property is important
since it guarantees that regions that are roughly similar will
be located close to one another. Conversely, over-and under-
segmented regions will be located much further apart since
the number of components they have in common with an
exactly segmented region is going to be small.

Let Vi
1 be the i-th eigenvector of a reference segmen-

tation and Vi
2 be the i-th eigenvector of a candidate segmen-

tation. Furthermore, let λi
1 and λi

2 be the eigenvalues
associated with Vi

1 and Vi
2, respectively. We can express the

angle between the two vectors as

(6)

that is, the inverse cosine of the vectors’ inner product.
Since we are working with PCA, orientation matters but
direction does not, therefore we can further write

(7)

where θ is expressed in degrees.
The distance between a reference segmentation

method V1 and a candidate one V2 can then be defined as
the weighted sum of each angle, i.e.,

(8)

The eigenvalues from the reference method are used
as weights because they express the importance of a given
orientation in the human segmentation, and thus the impor-
tance of committing an error there. This weighting will have
the effect of “denoising” the results, only preserving errors
that are relevant to the reference segmentation.

Given a reference basis, the proposed distance meas-
ure, Eq. (8), is effectively class, algorithm, and parameter
independent since it only measures the dissimilarity of two
bases in N – D space. It can thus be used to compare the
accuracy of different segmentation algorithms, and it can
also indicate the relative “difficulty” of segmenting a class
compared to others, as shown in the next section. Note that

the C matrix of Eq. (5) is a rotation matrix, thus it is a unitary
matrix. It follows that for all classes and segmentation meth-
ods we have

(9)

Thus, all the distance measures presented in this paper
are directly comparable to each other, as N is constant for
the entire framework.

In Ref. 11, it was proposed that eigenregions were
independent of the segmentation algorithm, and so were
the underlying features. While we do not contest this, we
point out that this argument was made in light of general
regions, i.e., all regions were considered equal and were
used. We argue, however, that most image classes have a
much lower underlying dimensionality than general regions.
As a result, their appearance in PCA space will vary signifi-
cantly and, consequentially, so will the outcomes of different
segmentation methods.

4 Experimental setup
The experimental protocol proceeds as follows: first, test
images are selected from a database; these images are seg-
mented by hand according to the chosen classes. The images
are then segmented using several automatic algorithms and
their output is assessed using a simple matching algorithm.
Finally, once the data is collected, eigenregions are selected
and distances measured.

The database we used consists of 55,000 real-world
images. They come in various original formats and quality,
and depict a very wide range of scenes. Out of these 55,000
images, 9000 have been manually annotated by photo-
graphic experts as containing either one of the memory colors:
blue sky, green vegetation, and skin tones. We randomly se-
lected 900 images (300 per class) out of these 9000 for our
experiment. Since segmentation is a computationally expen-
sive task, we resized the input images to 64 × 48 pixels for
practical reasons. This downsampling does not, however,
alter the location of regions within an image. Examples of
images in this database are shown in Fig. 2. These images
were segmented by hand. For every image, only the relevant
class is segmented, which leads to a binary segmentation of
the image (see Fig. 3 for an illustration).

The 900 images are also segmented using four differ-
ent algorithms: k-means (with k = 8), edgeflow (with σ = 8),
FH (with k = 50), and meanshift (with spatial = 6 and
range = 15). For the first two algorithms, the parameters
were chosen to match the ones from Ref. 11, while the latter
two were chosen so that the number of regions per image
was comparable with the first two. Despite parameters
being chosen in an informed manner, further optimization
for each method was not carried out and would likely
depend on the memory color class.

To assess the segmentation results, we look at every
region of the segmented image. If a region has a non-null

q V V V Vi i i i
1 2 1 1 2, cos , ,e j e j= -

q q qV V V V V Vi i i i i i
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intersection with the human segmentation, i.e., if a seg-
mented region contains a given class, this regions is deemed
a positive match. A binary map is thus created where the
region will appear in white and the rest of the image in black
(akin to the ones shown in Figs. 1 and 3). After all the binary
segmentations are obtained, they are reduced to a 6 × 8
image, according to Eqs. (1) and (2). From these output
images, 15 sets of eigenregions are calculated: one for each
algorithm-class pair (four algorithms + human segmenta-
tion).

5 Experimental results
The results are reported in two categories. First, we assess
the “localisability” of the memory color classes; that is,
whether there is some constancy across images regarding
position, shape, and/or size of regions that belong to a spe-
cific class. Indeed, if a class is not localized at all within
images, a PCA-based framework will be of little help. In a

second step, we show the class-specific eigenregions for the
three considered classes obtained by manual segmentation
and the four segmentation algorithms, and discuss these
results in terms of image content and segmentation behavior.

5.1 Localized classes
Figure 4 shows how localized our three considered classes
are. For blue sky and green vegetation, five eigenregions
(i.e., 10% of the available eigenvalues) suffice to explain
85% of the variance. Considering the prevalence of these
two classes in landscape images, these results are unsurpris-
ing. Conversely, skin tones are not as localised. Since skin
tones encompass all of face, hands, arms, body, etc., they are
expected to be inherently less localized than sky or grass.

Reconstruction rates, given by the normalized cumu-
lative sum of the eigenvalues, are important because they
indicate whether it is judicious to use geometrical features
for the detection of a given class. On the other hand, they do
not provide a measure of accuracy. A segmentation algo-
rithm that would deterministically partition images into two
regions (say top and bottom) would have a very high recon-
struction rate. It would, however, be a very inaccurate seg-
menter.

5.2 Class-specific eigenregions
After eigenvalues, we analyze the eigenregions given by the
algorithms on our three classes. The first five eigenregions
for each class and each algorithm are shown in Figs. 5–7,
where their values have been normalized between 1 (white)
and –1 (black) for better visualization. These eigenregions
provide important clues regarding the performance of a
given segmentation algorithm over a class. First, they allow
a visual comparison of class-localization and differences
across algorithms. Then, as pointed out in Ref. 11, they can
be used as features in image classification; the rationale is

FIGURE  2 — Example of  images  present in  the database: blue-sky
labelled  (first row), vegetation  labelled (second row) and skin-tones
labelled (third row). Images differ greatly with respect to subject, object
scale, and capture conditions.

FIGURE 3 — Human binary  segmentations examples of  the  three
considered classes. The original images containing sky, vegetation, and
skin (top row) and their segmentation (bottom row).

FIGURE 4 — Reconstruction rates for human segmentation. Blue sky and
green vegetation are fairly well localized, with 85% of the variance
explained by 10% of the eigenregions, while the skin tones
reconstruction rate is lower.
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FIGURE 5 — Column-wise: the first five eigenregions for the blue-sky class. Row-wise, from top to bottom:
Human segmentation, k-means, edgeflow, FH, and meanshift.

FIGURE 6 — Column-wise: the first five eigenregions for the green-vegetation class. Row-wise, from top
to bottom: Human segmentation, k-means, edgeflow, FH, and meanshift.
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that our particular eigenregions should actually prove more
useful than the general eigenregions since ours are readily
tailored to a specific class. Classification using eigenregions
is explored in the last section of the paper.

From the results, we observe that sky and vegetation
eigenregions appear more coherent than the skin ones. This
correlates well with the reconstruction curves shown in
Fig. 4 and is easily explained by the fact that sky and vege-
tation are mostly found in landscape-type images that have
a top/down decomposition (or left/right for pictures taken in
a portrait orientation). These regions are therefore located
in a smaller part of the 48-D space and thus are easier to
cluster via PCA.

The blue sky results, Fig. 5, show that while all algo-
rithms correctly find the first eigenregions, k-means and
edgeflow results appear, in general, much closer to the
human segmentation than either FH or meanshift when
looking at eigenregions 2–5. In general, however, the eigen-
regions correspond to our expectations, the first one being
a clear clear top/down decomposition, with some variation
in the subsequent ones that are likely to originate from images
where the sky is partly occluded (trees, buildings, people).

Vegetation eigenregions, Fig. 6, start similarly with a
landscape-type decomposition (top/down or left/right,
depending on the camera’s orientation), but this behavior
changes after the first three to indicate the presence of cen-
tred objects, e.g., trees or plants in indoor scenes. These
latter positions are harder to accurately segment and few
algorithms are able to correctly distinguish them. Both

meanshift and edgeflow appear to be closer to the ground
truth, but their results are still somewhat skewed. k-Means
performs well on the landscape-type images but is con-
founded by more complex scenes, while FH misses out one
of the first eigenregion.

Finally, skin tones eigenregions, Fig. 7, exhibit various
type of centre-surround interactions, i.e., the object of inter-
est is small and located centrally within an image. Since we
look for skin tones in general, as opposed to faces only, we
expect the results to be somewhat noisy because of the
greater location possibilities. The eigenregions express two
aspects well: the position and the scale ambiguity. Indeed,
while most of them are of center-surround types, the size
and the location of the “interest region” vary across eigenre-
gions. Looking at the four algorithms, we see that meanshift
is probably the closest to human segmentation while k-
means is not too far behind. Edgeflow and FH appear to
perform worse but for different reasons. In fact, their
behavior is complementary with FH not detecting the larger
regions (eigenregion 1) and edgeflow wrongly detecting the
smaller ones.

Looking at these results, we can draw the following
conclusions: class-specific eigenregions have very distinct
shapes that express the content of the images well; they are
algorithm-dependent, and the closest algorithm to human
segmentation does not appear to always be the same.
Finally, the shape of the eigenregions correlates well with
the reconstruction rates observed, i.e., the simpler the shape
of the eigenregion, the better localized the underlying class is.

FIGURE 7 — Column-wise: the first five eigenregions for the skin tones class. Row-wise, from top to bottom:
Human segmentation, k-means, edgeflow, FH, and meanshift.
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5.3 Comparison with general eigenregions
The original eigenregions proposed in Ref. 11 were calcu-
lated over general regions, i.e., all types of regions regardless
of their class. A key feature of these general eigenregions,
shown in Fig. 8, is that their shape was independent of the
segmentation algorithm, a property not verified with the
class-specific ones (see Figs. 5–7).

Comparing the first row of Fig. 8 with the first rows of
Figs. 5–7, note that general eigenregions are quite different
from the class-specific ones calculated over manual segmen-
tation, i.e., the ground truth, suggesting that accurate seg-
mentation is key to achieve relevant features and that
class-specific eigenregions are better suited geometric descrip-
tors.

6 Segmentation evaluation and database
self-sufficiency

Our proposed distance measure, Eq. (8), allows to numeri-
cally compare the performance of automatic segmentation
to a manual one, determining whether the algorithms’ seg-
mentation accuracy is class dependent. This measure can
furthermore be employed to determine how many images
are needed to be representative of a given class, i.e., the
number of images needed to have a similar region structure
than in the entire database. We note that, while all eigenval-
ues have been used to obtain the results reported in this
section, in practice eigenvalues beyond the tenth have little
impact on the final result.

6.1 Which algorithm for which class?
The eigenregions themselves give useful information, still,
assessing distance in a 48-D space, even when provided with
visual cues, is difficult. Using our proposed measure [Eq.
(8)], we evaluate the distance between the four algorithms
and human segmentation for each class. The results, reported
in Table 1, confirm what was visually inferred in the pre-
vious section. Looking at the distances as a whole, blue sky
is the best segmented region (smallest distance), followed

by vegetation and skin tones. This is expected given the
much greater variety of position, size, shape, and color of
skin tones when compared to blue sky or vegetation, thus
making them harder to segment. Also, we see that while on
average meanshift performs better than the other algo-
rithms, it is not necessarily the best performing one for
every class.

Analyzing the results separately, one observes that k-
means and edgeflow are equivalent in their sky segmenta-
tion, meanshift, and edgeflow are better for vegetation, and
meanshift is best for skin tones; these results correlate well
with the visual assessment done in the previous section. For
all classes, FH is rated as the worst performing algorithm.
This comparison brings several questions that have to be
answered: why does k-means keep up, why is meanshift
worse in the simplest class, and why does FH perform so
badly?

k-Means’ performance can be explained by the choice
of classes. Indeed, memory colors are classes that are well
located in color space,2 so a cluster including them will usu-
ally be found. As a result, k-means can be expected to be
accurate. Its performance for vegetation and skin is, how-
ever, lower since these classes’ luminance and color can be
altered by lighting effects (such as shading), thus creating
errors.

Edgeflow includes both color and texture information
and is therefore expected to yield a good segmentation of
our three classes. However, its accuracy for skin tones is not
always high. Looking at both the distance and the eigenregions
themselves, one observes that its regions are larger than
they should be. This is, most likely, the consequence of the

FIGURE 8 — The first ten general eigenregions.

TABLE 1 — Distance between a given algorithm and human
segmen- tation (smaller is better). The results are highly class
dependent and there is not a best algorithm overall.
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choice of σ that influences the scale at which variations are
sought. Additionally, artefacts such as glasses, hats, occlu-
sions or sometimes hair can induce a wrong segmentation.

Perhaps surprisingly, FH is the worst rated algorithm
in our test, and this for all classes. The reason here is that
the choice of parameters has given rise to chronic over-seg-
mentation. While the number of regions in the image is not
overly high (between14 and 28 regions per image), it was
very sensitive to noise, vignetting, and small level texture
alterations. This is confirmed by looking at the number of
regions found for each class. For sky, vegetation, and skin,
FH has, on average, 3.2, 5.2, and 2.6 regions per image,
respectively, compared to meanshift’s 1.2, 2.3, and 1.5, indi-
cating a strong over-segmentation issue. We have found no
significant correlation between number of regions and per-
formance for other algorithms than FH, whose over-seg-
mentation was significant.

Finally, meanshift, the best overall algorithm, exhibits
a rather unique behavior: its worst class is sky, which is the
opposite of every other algorithm. Again, this can be explained
by the parameters used. While they were well-suited to
vegetation and skin, they tend to under-segment sky, espe-
cially in the presence of softer gradients, such as clouds or
haze.

Note that we do not advocate here that one algorithm
is better than the others. Rather, the results show that a
given algorithm (or a given choice of parameters) appears to
be measurably better for segmenting a specific class, not all
classes in general. It is therefore well possible that mean-
shift, with other parameters, would have a more accurate
sky segmentation. However, this could be detrimental to its
segmenting of skin or vegetation. A direct consequence of
our results is that the proposed distance measure can not
only be used to select one algorithm, but could also be em-
ployed to optimise a given algorithm’s parameters in order
to segment a specific class.

6.2 How many images to form a
representative set?

Class-specific eigenregions were calculated for over 300
images (per class). We propose that the suitability of this
set’s size can be assessed using the proposed distance meas-
ure. The insight is that if regions are reasonably well local-
ized in images, then selecting 200 images instead of 300
should not significantly alter the eigenregions and, conse-
quently, the induced distance between the two bases will be
small.

For each class, we have selected at random 10, 20, 50,
100, and 200 images out of our set of 300. We repeat each
test 200 times and calculate the average distance (over the
200 sets) to the basis obtained using the 300 images (the
human segmentation eigenregions reported earlier). If the
regions are well-behaved, then we should observe that the
error decreases fast as the number of images used increases.
The results, Figs. 9–11, show that the error curves are

monotonically decreasing. To put the behavior of the dis-
tance measures in perspective, we also plot, on the same
graphs, the distance between the basis of the meanshift
eigenregions and the 300 human segmented ones. The con-
sidered classes in this experiment are the three memory col-
ors plus, for comparison purposes, the “normal” class, i.e.,
all the regions that belong to neither of the memory colors.

We see that the difference between using 200 or 300
images is small compared to the error incurred by automatic
segmentation, but using anything less than 200 will neces-
sarily introduce approximations that are not negligible.
Knowing, a priori, how many images are needed to form a
representative subset is valuable in terms of time and
resources saved.

In addition to being monotonically decreasing, the
curves obtained using our angular error measure are also
well correlated with the results obtained previously; that is,

FIGURE 9 — Influence of the number of images on the distance for the
vegetation class. When the error becomes low, the implication is that
the subset approximates the complete set of images sufficiently well. The
vertical lines at each point indicate the range of performance across
subsets, which shows that a carefully chosen small subset can be as
representative of the entire set as a larger, randomly, selected one. The
horizontal line represents the distance of meanshift to human segmen-
tation for the 300 images, to allow visual comparison.

FIGURE 10 — Influence of the number of images on the distance for the
skin tone class.
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for a given number of images, the relationship between sky,
vegetation, and skin and general eigenregions does not vary
from the earlier reported reconstruction rates, e.g., regard-
less of the number of images used, sky is always more local-
ised than vegetation and skin. Furthermore, the slopes of
the curves exhibit the same behavior. Given that these
reconstruction rates model the variability of these classes
well (they corresponds to what one sees), these experiments
effectively validate the angular error measure.

Of course, the number of images needed to form a
good subset will depend on the inherent localisation of a
given class as well as on the variety of images present in a
given database. Additionally, we point out that our distance
measure can be used so select a specific subset that matches
the data structure better, since the results show that there is
a large variance across subsets.

7 Classifying memory colors
Eigenregions are geometrical region features, as such they
can be used for classification tasks. In Ref. 11, experiments
including general eigenregions showed their usefulness in
memory color region classification. Here, we assess the improve-
ment that can be obtained by utilizing class-specific eigen-
regions instead.

This experiment uses the same settings as the ones of
Ref. 11. In addition to the first 10 eigenregions, 12 color
(mean and standard deviation of R, G, B, L*, a*, b*) and the
seven Haralick features23 are employed.

The classification algorithm is a multivariate Gaussian
based on the maximum a posteriori rule, which, being a
supervised classification algorithm, requires a ground truth.
The ground truth and prior probabilities are calculated over
9874 manually annotated regions, randomly selected from a

database of 77,000 regions. The chosen training/testing
scheme is a 90/10 recursive decomposition: 90% of the regions
are randomly selected to train the classifier and the remain-
ing 10% are classified. This procedure is repeated until all
the regions are classified, and the rates are then averaged.

Note that we are not advocating this scheme as the
best possible classification algorithm for this task; our aim is
to evaluate the performance of class-specific eigenregions
and the numerical results should be observed for their rela-
tive performance to each other rather than in absolute
terms.

Table 2 compares the classification rates without, with
the general, and with the class-specific eigenregions calcu-
lated over the k-mean segmentation (the segmenter used in
Ref. 11). Additionally, we provide classification results for
regions segmented with each class’ best performing algo-
rithm (according to our distance measure) as well as with
manual segmentation.

The results show a number of interesting points. First,
class-specific eigenregions are better suited to classifica-
tions than the general ones. Indeed, an observation was
made in Ref. 11 that eigenregions did not help vegetation
classification. Class-specific ones, however, also increase
vegetation classification successfully.

Importantly, the quality of segmentation also plays a
role in classification results, the increase in classification
rates is coherent with the segmentation evaluation results
given by our distance measure. The combination of class-
specific features withadequate segmentation algorithms
does provide the best classification.

8 Usage and performance of the framework
This paper has presented the various steps undertaken to
obtain class-specific eigenregions, and utilize them in seg-
mentation assessment and region classification. We briefly
discuss here the complexity of these steps in terms of user
involvement and computation time.

The main required steps to achieve the results pre-
sented herein are image segmentation, ground truth acqui-

TABLE 2 — Classification rates (average of correct positive and correct
negative rates) for the memory-color regions. The rates increase with the
use of class-specific eigenregions. Improvements are also noticeable
when the best performing segmentation algorithms (according to our
measure) are employed to obtain the regions.

FIGURE 11 — Influence of the number of images on the distance for the
sky class (blue with error bars). Note that the behavior of the sky class
is very similar to the vegetation one. Also represented on this graph, the
performance of meanshift for the sky class (blue, dashed line) and the
relationship between number of images and distance for the “normal”
class (black, without error bars). One observes that since the normal class
is much less localized than the others, its distance is much greater,
regardless of the number of images used.
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sition, feature extraction, classifier training, and region clas-
sification. Among these, feature extraction and region clas-
sification can be performed in real time (all numerical times
are obtained with an Apple MacBook Pro 1.8-GHz dual core
and 4 Gb of RAM), as the calculations are performed on
low-resolution images.

Image segmentation can be time consuming depend-
ing on the considered segmentation algorithm. Indeed,
there is a significant performance difference between k-
means (<1 sec) and meanshift (a few seconds). Other algo-
rithms, such as normalized cuts24 take even more time
(almost 1 minute) and were thus excluded from our com-
parison. A trade-off between segmentation accuracy and
speed can therefore exist and has to be factored in choosing
an algorithm.

The last two steps, ground truth acquisition and clas-
sifier training are the most intensive but both can be done
offline; training the classifier typically takes a couple of days.

Ground truth, meaning both manual segmentation
and region labelling is obtained through a graphical user
interface. In a first step, the image is strongly over-seg-
mented (using k-means) and a user is asked to click on all
regions that correspond to a given class, thus enabling
region merging in order to obtain a binary map. Manual and
automatic segmentations are then shown to the user (on a
per-region basis), where a selection between sky, vegetation,
skin, and “normal” is made. An example of the GUI is pro-
vided in Fig. 12.

9 Conclusions/future work
We have presented an eigenregion-based framework that
evaluates class-specific image information. Using human
segmentation and assessment of automatic segmentation
algorithms, we were able to show, numerically, that naturally
occurring classes in images were neither evenly distributed
nor similarly localized. Class-specific eigenregions were
shown to outperform general ones in a standard classifica-
tion framework for all the considered memory-color classes:
sky, vegetation, and skin tones, all of them being of critical
importance for color rendering or correction tasks.

Moreover, we have proposed a distance measure in
N – D space that takes into account the relative weight of a
given eigenregion. Using that distance, we showed that differ-
ent algorithms segment different image classes with varying
accuracy compared to human segmentation. Importantly,
the algorithms’ performance is strongly class dependent,
there is no single best algorithm. Finally, if time is a critical
factor, the segmentation algorithm cannot be chosen on intrin-
sic performance alone. The proposed distance measure can,
however, be used to optimise the algorithm’s settings.

10 Reproducible research
At LCAV, we aim to make our research reproducible by every-
one. The matlab code used to obtain the eigenregions and
distances measures reported in this paper is therefore avail-
able online at http://rr.epfl.ch

References
1 C. Bishop, Pattern Recognition and Machine Learning (Springer,

2007).
2 P. Bodrogi and T. Tarczali, “Color memory for various sky skin and

plant colors: Effect of the image context,” COLOR Research  and
Application 25(4), 278–289 (2000).

3 C. Carson et al., “Blobworld: Image segmentation using expectation-
maximization and its application to  image querying,” IEEE PAMI
24(8), 1026–1038 (August 2002).

4 J. Chen et al., “Adaptive image segmentation based on color and tex-
ture,” IEEE International Conference on Image Processing
(ICIP2002), 122–126 (2002).

5 D. Comaniciu and P. Meer, “A robust approach toward feature space
analysis,” IEEE Trans. PAMI 24(5), 603–619 (2002).

6 F. Estrada and A. Jepson, “Quantitative evaluation of a novel image
segmentation algorithm,” CVPR, 1132–1139 (2005).

7 M. R. Everingham et al., “Evaluating image segmentation algorithms
using the pareto front,” ECCV, 34–48 (2002).

8 P. Felzenszwalb and D. Huttenlocher, “Efficient graph-based image
segmentation,” Intl. J. Computer Vision 59(2), 167–181 (2004).

9 C. Fowlkes et al., “Learning affinty functions for image segmentation,”
CVPR 2, 54–61 (2003).

10 C. Fredembach et al., “Region-based image classification for automatic
color correction,” Proc. 11th IS&T/SID Color Imaging Conference,
59–65 (2003).

11 C. Fredembach et al., “Eigenregions for image classification,” IEEE
Trans. PAMI 26(12), 1645–1649 (2004).

12 F. Ge et al., “Image segmentation evaluation from the perspective of
salient object extraction,” CVPR 1, 1146–1153 (2006).

13 A. Jain, Fundamentals of Digital Image Processing (Prentice-Hall
International, 1989).

14 W. Ma and B. Manjunath, “Edgeflow: A technique for boundary detec-
tion and image segmentation,” IEEE Trans. IP 9(10), 1375–1388
(2000).

15 D. Martin, “An empirical approach to grouping and segmentation,”
Ph.D. Thesis, U.C. Berkeley (2002).

16 D. Martin and C. Fowlkes, The Berkeley Segmentation Database and
Benchmark, 2001, http://www.cs.berkeley.edu/projects/vision/group-
ing/seg.

17 D. Martin et al., “A database of human segmented natural images and
its application to evaluating segmentation algorithms and measuring
ecological statistics,” ICCV, 416–425 (2001).

18 M. Meila, “Comparing clusterings by the variation of information,”
Proc. Intl. Conf. on Learning Theory, 173–187 (2003).

19 R. Unnikrishnan et al., “Toward objective evaluation of image segmen-
tation algorithms,” IEEE Trans. PAMI 29(6), 929–944 (2007).

20 J. Perez-Carpinell et al., “Familiar objects and memory color,” COLOR
Research and Application 23(6), 416–427 (1998).

FIGURE 12 — The graphical user interface used in the ground truth
acquisition.

10 Fredembach et al. / Memory-color segmentation and classification using class-specific eigenregions



21 J. Da Rugna and H. Konik, “Color coarse segmentation and regions
selection for similar image retrieval,” CGIV 2002: IS&T First Euro-
pean Conference on Color in Graphics, Image and Vision, 241–244
(2002).

22 A. Webb, Statistical Pattern Recognition (Arnold, 1999).
23 R. M. Haralick et al., “Textural features for image classification,” IEEE

Trans. on Systems, Man and Cybernetics, 610–621 (1973).
24 J Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE

Trans. on Pattern Analysis and Machine Intelligence, 888–905 (2000).

Journal of the SID 17/11, 2009 11


