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Abstract

For some computer vision tasks, the presence of shadows in images can
cause problems. For example, object tracks can be lost as an object crosses
over a shadow boundary. Recently, it has been shown that it is possible to
remove shadows from images. Assuming that the location of the shadows
are known, shadow-free images are obtained in three steps. First, the image
is differentiated. Second, the derivatives at the shadow edge are set to zero.
Third, reintegration delivers an image without shadows. While this process
can work well, the resultant shadow free image often has artifacts and, more-
over, the reintegration is an expensive computational procedure.

In this paper we propose a method which can produce shadow free images
quickly and without artifacts. Our algorithm is based on two observations.
First, that shadows in images are closed regions and if they are not closed ar-
tifacts can result during reintegration. Thus we propose to extend the existing
methods and enforce the constraint that shadow boundaries must be closed
prior to reintegration. Second, that the standard reintegration method used
(solving a 2D Poisson equation) also, necessarily, introduces artifacts. The
solution here is to reintegrate shadow and non shadow regions almost sepa-
rately. Specifically, we reintegrate the image along a Hamiltonian path that
enters and exits the shadow regions once. Detail that was masked out at the
shadow boundary is then infilled in a second step. The resulting reintegrated
image has much fewer artifacts. Moreover, since the reintegration method is
path based it is both simple and fast. Experiments validate our approach.

1 Introduction

A shadow is cast in a scene when an object lies in the path of the direct illumination
source. If a scene is illuminated by two or more sources, then the shadow and non-shadow
regions of an object may differ not just in terms of their relative brightness, but also in
terms of their relative colour. For example, in a typical outdoor scene, the non-shadow
parts of the image are illuminated by a mixture of direct sunlight and light from the sky. In
contrast, shadow regions are lit only by skylight (see Fig. 6 for an illustration) . These two
illumination sources differ significantly both in their brightness and their colour, and, as
a result, so do the resulting image pixel values corresponding to shadow and non-shadow
regions.



In many computer vision applications such as tracking, scene analysis and object
recognition it has been shown that shadows hamper algorithm performance [1,2]. Ad-
ditionally, one may also wish to remove shadows for cosmetic reasons since they are
often accidental and/or unwanted artifacts in a photograph e.g. in some conditions (flash)
it can be impossible to take shadow-free images. Finally, when working with images that
have a large bit depth, the presence of a shadow is indicative of a high dynamic range
image that probably cannot be properly displayed. If we can remove the shadow, we are
able to compress the dynamic range.

A simple framework for shadow removal has recently been proposed [3]. Given an
image containing both shadow and non-shadow regions, and assuming the location of
shadows are known, shadows can be removed by a process of differentiation, masking
(the shadow) and reintegration. In detail, the x and y derivatives are taken at each point
in the image. The x and y derivatives at pixels on shadow edges are set to 0. Then the
resulting derivative field is reintegrated. In the original work reintegration was performed
by formulating the problem as solving a 2D Poisson equation. Using this method, one
can recover a colour image whose content is the same as the original image, but where
shadows have been removed.

While this approach can often give good results, the resulting shadow-free images
can often have undesirable artifacts. Indeed, one might reasonably expect artifacts. The
reason for this is the non integrability that occurs because setting shadow edge deriva-
tives to 0 (a local effect) is translated to global reintegration errors. Reintegrated images
often have smearing artifacts and may look flatter than the original image. In addition,
reintegration posed as solving the Poisson equation is computationally expensive and, for
high-resolution images, a time consuming task.

In recent work [4] it was shown that the reintegration problem can be reformulated as
a 1-dimensional problem by integrating the image along a 1D path that visits each pixel
in the image once and only once. Formally, reintegration is along a Hamiltonian path.
However, while this approach addresses the issue of computational complexity, it is also
non-robust in the sense that the recovered images can still have visible artifacts.

Our aim in this paper is to consider the reintegration problem more carefully and
to propose a robust, computationally simple 1-dimensional reintegration procedure. We
achieve this aim by investigating the reasons that artifacts arise in the 2D and 1D rein-
tegration schemes which have been proposed to date. We show that robust reintegration
requires that shadow boundaries should be closed and we propose a method to enforce
this property. In addition, to obtain artifact free images we argue that we must carefully
choose a 1-dimensional path through the image pixels. We argue that for 1-d reintegra-
tion artifacts occur as we enter and exit shadows and so provide a method which produces
Hamiltonian paths that exit and enter each shadow regions only once. Our final contribu-
tion is to show that shadow edges themselves do not have to be fully reintegrated but can
be later inpainted in the image. We present results which show that our new reintegration
scheme gives very good shadow-free images which have significantly fewer artifacts than
images obtained using either a 2D or naive 1D approach.



2 Background

All computations in this paper are carried out in the log domain, so ratios between pixels
are preserved. So, though not explicitly stated, all computed images are exponentiated
when making outputs.

Let I denote the log of an image. Its gradient,∇I is

∇I = (
∂ I
∂x

,
∂ I
∂y

) (1)

Now, suppose the shadow edges,S, can be found (e.g. using the method set forth in [5]
and in section 2.1) and that their derivatives can be thresholded using a functionT(∇I)
such that

T(∇I) = 0 if |∇I | ∈ S

= ∇I otherwise

How can I be recovered fromT(∇I)? This is not an easy question to answer since a
gradient image is composed of two number per pixel but the reintegrated image has a
single number per pixel. Besides, a 2D function can be reintegrated only if the gradient
field is integrable (i.e. conservative). Thresholding the edges implies that this condition is
usually not met and one therefore has to approximate the integral by a least square method
[6]. Effectively, one solves a Poisson equation of the form

∇2I = div(T(∇I)) (2)

Where∇2 is the Laplacian operator∇2I = ∂ 2I
∂x2 + ∂ 2I

∂y2 and div(T(∇I))= ∂ (T(∇I))x
∂x + ∂ (T(∇I))y

∂y
To solve (2) we must define boundary conditions. We either assume Dirichelet (the

boundary of the image is zero) or Neumann (thederivativesat the image boundary are
constant) constraints. Subject to these constraints we can invert the Laplacian in (2) using
standard techniques (e.g. by using Fourier or Multigrid methods). The derivatives of the
reintegrated image found using this method are as close as possible to the thresholded
derivatives of the original image.

2.1 Invariant Images

In the definition ofT(∇I), we mentioned the thresholding was performed using the loca-
tion of shadow edges. Distinguishing between material (reflectance) and illuminant edges
is however not a trivial task. To help with this task, invariant images (sometimes called
intrinsic images) are used. Invariant images are reflectance only images, i.e. they do not
contain luminance variations (see Fig. 1a).

Various methods to obtain invariant images have been proposed [5,7] and we will be
using those obtained according to [5]. We apply edge detection to both the original and
the invariant image (see Fig. 1b for the workflow). By definition of the invariant images,
edges that are present in the original but not in the invariant images are luminance edges,
i.e. shadow edges for our purposes. We point out that the resulting shadow edge map,
though reasonable, is incomplete.



Figure 1:(a): 2 images and their corresponding invariant images.(b) From left to right:
the original image, result of edge detection on the original image, result of edge detection
on the invariant image, shadow edges obtained by subtraction of the edge maps.

3 Simple 1D Shadow Removal

In [4] it has been proposed that a 1-dimensional, path-based, method could also be used
for shadow removal. This method uses Hamiltonian pathsp to go through the image.
Since by definitionp visits every pixel once and once only, at each pixel corresponds a
single derivative (dx or dy). Unlike the 2-D reintegration problem, the path based reinte-
gration problem is well posed and so boundary conditions need not be set. For the sake of
simplicity, letdx denote the derivatives ofI alongp. In standard calculus notation,I can
be reintegrated according to

I(x)+c =
∫

p

dI
dx

dx (3)

with an unknown integration constantc. Starting the reintegration at a non-shadow pixel
allows to uniquely determinec and obtain a correct shadow-free imageI ′. Let pi be the
ith pixel visited alongp; the path-based integration becomes

I ′p1
= Ip1 (4)

I ′pi
= I ′pi−1

+T(∇I)pi (5)

From a complexity point of view, the integration problem is reduced to a series of sums
with no boundary conditions to consider.

Let us interpretI as a grid graph (or mesh) of sizen×mwhere each pixel is a node and
where edges are assigned on a 4-neighborhood basis (left, right, up and down). Findingp
then amounts to finding an Hamiltonian path, which in a general graph is an NP-complete
problem. There are however certain available easy paths for the class of grid graphs,
raster and fractal type paths (Peano curves [8]) among others. Using those paths and
thresholding the image gradients at the shadow edge locations enables the reintegration
of shadow-free images. This method is imperfect because we might have an incomplete
shadow edge mask or there might be a material edge coincident with a shadow boundary.
Thus, more stable results are obtained when several (say 5-6) different paths are used to
reintegrate images and then the results are aggregated in some way.



3.1 The Case for 1D Shadow Removal

1D reintegration has two advantages over its 2D counterpart: it is computationally faster
(N sums instead ofNlogN for inverse FFTs) and much simpler to implement. Addition-
ally, because shadow edges are masked out we face a non integrability problem in the 2 D
method. Indeed, solving the Poisson equation amounts to finding the image whose deriva-
tive is closest to the original thresholded edge map in a least squares sense. Unfortunately,
the local thresholding of derivatives leads to global artifacts during reintegration. In con-
trast, the 1-D path reintegration has no artifacts assuming we have accurate knowledge of
the shadow location.

We illustrate these ideas in figure 2. The first image shown is an artificial image com-
posed of small gradients and a couple of step edges (large gradients). The superimposed
shadow region, shown in black overlay, contains a step edge while most of the shadows
boundaries are laid over small gradients. The middle image shows the reintegration us-
ing the Poisson method. Clearly, the result is shadow free but the the image structure is
incorrectly estimated. In the image on the right we show the 1D path reintegration. The
shadow is removed without error.

Figure 2:The original image with the artificial shadow region in black overlay (left); the
2D reintegration where Neumann boundary conditions have been used (center) and the
1D integration (right). The 1D figure is devoid of the global modifications that occur with
the 2D reconstruction.

Let us quantify how well each method works. To do this we take the derivatives
of both 1D and 2D shadow-free images and compare them to the ones of the original
image. As the shadows have been altered we only consider the non-shadow portions of
the original image. Let∇I be the gradient of the non-shadow pixels of the original image
I and,∇I1D and∇I2D be the gradients of the images reintegrated with the 1D and 2D
methods respectively. We compute the distances between those gradients,d1D andd2D,
using the following

d1D =
|∇I −∇I1D|

‖∇I‖
, d2D =

|∇I −∇I2D|
‖∇I‖

(6)

Since the 2D method solves the integration in the least squares sense, it is expected that
the recovered derivatives will be globally close to the originals. The path-based method on
the other hand recovers derivatives that are much closer to the original ones on a pixel by
pixel comparison due to the locality of the procedure. Averaging over a number of images
yieldsd1D = 0.03 andd2D = 0.09. This result might seem counterintuitive since we have
less error than a least-squares solution. However, the higher error in the 2D reintegration
results from trying to recover an image which has zero derivatives at the shadow edge.



The 1D we develop here (and discuss in the next section) works better because it ignores
the detail (and derivatives) under the shadow edges.

4 Robust Shadow Removal

While the simple 1D method does indeed result in shadow-free images, they can also
contain visually disturbing artifacts [4]. Those artifacts are introduced when an error
is committed in the reintegration. Since the shadow-free image is obtained by linearly
reintegrating the gradients, an error occurring at a timet1 will be propagated through
all timest > t1. The errors themselves are usually provoked by one of three factors: an
incomplete shadow mask, the presence of a material edge or the presence of noise near
the shadow edges.

The creation and propagation of artifacts is illustrated in figure 3, where the 1D graphs
represent pixels in the image in their path-visited order. Figure 3a displays the ideal case
where the non-shadow parts of the image are preserved and the shadow is effectively re-
moved. If the shadow mask is not closed, which can happen since the shadow detection
method does not enforce closure, then a path can enter the shadow region through a de-
tected shadow edge but then exit it through a “hole” in the edge map. Such a case is shown
in figure 3b where one can appreciate the resulting error. Finally, when a material edge
is encountered at the same time than a shadow one or when noise is present, thresholding
the gradient is incorrect as it supposes that both sides of the shadow edge are similar (i.e.
would have the same values under identical lightning conditions). Figure 3c exemplifies
the case where noise is present at the exit of the shadow region; the thresholded gradient
does not take the noise into account and errors result. A further aspect to have in mind is
that the human eye is more sensitive to regular geometrical features [9]. Since the paths
previously mentioned (raster and fractal) are all very regular, it makes sense to look for
paths having a more random structure as to minimize the visibility of artifacts.

Figure 3: Graph representation of the shadow regions of an image. (a) a perfect (sup-
posed) reintegration. (b) Reintegration with errors due to an imperfect shadow mask. The
entry in the shadow region is well detected but the exit is not, thus creating a large error.
(c) The noise/material edges case. The shadow edges are well detected, but the assump-
tion of similarity is not enforced. Note how an error created at a point t1 in time is still
propagated throughout all the pixels visited after a time t> t1.

To develop a robust framework for shadow removal, we address the various generators
of errors present in the current algorithm. We first aim to close the shadow regions and
then proceed to minimize the number of crossings of the shadow edges in order lo limit



the influence of material edges and noise. More stable results can also be obtained by
averaging the output of a small number (say 4-5) of different paths. This does not induce
a greater complexity since the most expensive steps of the algorithm (obtaining the mask
and inpainting) are done once per image regardless of the number of paths.

4.1 Closing Shadow Edges

To close shadow edges we will use two different edge maps. The first one is obtained
by the method summarised in section 2.1 (by comparing the derivatives of the intrinsic
and the full colour image). LetIS be this edge image. By constructionIS contains only
(but possibly incomplete) shadow edges. The second edge map,IM, is obtained with the
meanshift algorithm [10]. Meanshift segments images intoN regions and ensures that all
edges are closed.

We then useIM as a guide to “complete” the edges ofIS. When an open point -
no neighbour yet not along the image boundaries- is encountered inIS, we check which
regions ofIM are concerned (the ones having connecting edges). Among those regions,
we select the one for whichIS edges span it the closest and complete said edge (see Fig. 4
for illustration). We used this strategy on all of our edge maps and it consistently produced
good results.

Figure 4: From left to right: the original image, detected shadow edges IS, meanshift
edges IM and the resulting closure.

4.2 Random Hamiltonian Paths

The noise/material edge source of errors shown in figure 5c cannot be removed but we can
minimize its occurrence. To do this, let us consider what happens when we reintegrate an
image. Is is possible that when we enter a shadow, and so assume zero derivatives, that
there is actually a material change (or simply noise). Suppose such an event happens with
probability perror. If we enter and exit a shadow regionN times, then the probability of at
least one error being propagated is 1− (1− perror)N, which tends to 1 whenN is large. If
however by design we only enter and exit the shadow region once, the probability of error
propagation isperror (for N ≥ 1, perror ≤ 1− (1− perror)N). Moreover, in our method we
will choose to reintegrate over a small number, say 4, of paths. In this case, the probability
of all the paths being corrupted isp4

error (which is almost always close to zero).
Reducing artifacts in the reintegrated image can therefore be achieved by both ran-

domizing the paths structure (necessary because simple patterns are visibly noticeable)
and allowing a single crossing of the shadow edge. Allowing a single opening alter our
graph in a way that the simple paths proposed in [4] and [8] are not usable anymore. Due



to the nature of our graph however, we know [11] that a random Hamiltonian path over
our incomplete grid graph must exist. Indeed, probabilistic methods have been proposed
[12] to find these paths but our graphs are relatively large and these methods take a great
deal of time. So instead, we propose here a simple, deterministic and efficient method
whose only requirement is that the image has to be of even size.

Let I be an image of sizen×m, where bothn andmare even. In the graph representa-
tion, all valid pixels are nodes and all non valid ones (the shadow mask pixels) are holes in
the mesh. LetG be the original graph andGR the n

2 ×
m
2 graph obtained by downsampling

G. In GR, we create a single random connection between the shadow and non-shadow
regions through the shadow edges. We then generate the minimum spanning treeT of
GR, where the randomization of the paths can be ensured by weightingGR with random
weights prior to generatingT. OnceT has been found, we “walk around” it, in a depth

Figure 5: (a) The spanning tree on GR and its walk around; (b) The corresponding tree
for G and a possible Hamiltonian cycle. (c) The 4 different cases to turn a node of T into
4 nodes of the upsampled tree. Depending on their degree, the nodes have more or less
“inside connections”. Since these are the only possible degrees in our graphs, it is always
possible to derive an Hamiltonian cycle using such substitutions.

first way (see figure 5a for an illustration) until each edge has been visited twice. Doing
so allow us to have the order list of nodes to visit to form a cycle. By constructionT is a
spanning tree overGR but we are looking for a cycle onG. We can upsampleT by a factor
of 2 and derive an Hamiltonian cycle overG. Figure 5c lists the different cases that can
arise whenT is upsampled and it can be observed that we can always find such a cycle.
The downsampled graphGR with the allowed random connection is strongly connected,
which ensures that a minimum spanning tree will be found. Since we are working on grid
graphs, every node ofT, except the root, has a single parent and at most 3 child nodes.
The root node has no parent and at most 4 child nodes. The upsampling/downsampling
procedure implies that for each node inGR andT correspond 4 nodes inG andTU (the
upsampled spanning tree). From the enumeration shown on figure 5c, it follows that one
can always obtain a cycle in the upsampled tree by substituting the nodes ofT for the
ones shown in fig. 5c. From a complexity point of view, the spanning tree can be com-
puted inO(N) for our type of graphs and the substitution can be also done inO(N) by
walking aroundT and substituting the nodes depending on their degree. From a temporal
point of view, a C++ version of the algorithm takes 0.3 seconds to calculate a path on a



1048×1048 graph.

4.3 Inpainting

Having obtained a proper shadow mask and a path, a shadow-free image can now be in-
tegrated. Having allowed a single opening in the shadow mask, it follows that all other
shadow edges pixels are not visited/reintegrated. The missing information can be inter-
polated by various inpainting (sometimes called infilling) techniques. The most common
and fastest ones usually use the principle of diffusion to “grow back” missing regions
from their surroundings [13]. They unfortunately usually results in blurred regions that
are too noticeable for our purpose.

To prevent that, we use the method described in [14]. One first compute all possible
11×11 windows for which all pixels are defined (not in the mask), letN be that number.
Since the images are in and RGB-type space, each window has a size 11×11×3. Then,
for each of the shadow mask pixels, a centered 11×11 window is used and its Euclidian
distance with respect to theN 11×11 windows in the image is computed. The window
corresponding to the minimal Euclidian distance is then use to “fill in” the missing values.
That is, the pixels values of the chosen window are directly copied at the “blank” pixels
location. The procedure is then repeated until there are no more missing pixels.

5 Results

Figure 6 shows results obtained over a variety of images; the 1D results are the average of
the output of 4 paths. Comparing the results obtained by the 2D and the 1D method one
realizes the improvement in quality of the latter, especially in colour rendition, despite
having a simpler framework. Results are however not perfect. A non-exact shadow mask
or the presence of colored noise in the image might alter the image gradient and perturb
the reintegration. This leads to shadow regions being a little “off-color” in some images,
but this does not have a significant impact on the overall quality of the shadow-free im-
ages.

6 Conclusion

To summarize, we have established a framework for robust reintegration of shadow-free
images. We have addressed the different problems of both existing 1D and 2D methods
and proposed solutions to their shortcomings.

We have shown that a 1D approach was more suited to the task of shadow removal
and that its results were more accurate than its 2D counterpart, while still being less
computationally expensive. We further devised solutions for existing 1D reintegration
using the insights that shadow regions had to be closed and that the number of crossings
through the shadow edges should be limited. Additionally, we proposed a fast method
used to derive random Hamiltonian cycles in grid graphs. We finally proposed that non-
visited shadow edge pixels do not have to be reintegrated and can simply be inpainted
once the reintegration is complete.

To further enhance the quality of shadow removal, a better shadow detection method
would prove useful. This particular aspect appears at the moment to be a bottleneck for



Figure 6:Typical results from shadow removal. The second line are results obtained with
the 2D method; the third line are results obtained with our path-based algorithm.

both quality and speed. Since the removal is directly dependant on the shadow mask, we
are currently investigating novel techniques for robust and fast shadow detection.
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