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Abstract

Given the location of shadows, how can we obtain high-
quality shadow-free images? Several methods have been
proposed so far, but they either introduce artifacts or can
be difficult to implement. We propose here a simple method
that results in virtually error and shadow-free images in a
very short time. Our approach is based on the insight that
shadow regions differ from their shadow-free counterparts
by a single scaling factor. We derive a robust method to
obtain that factor. We show that for complex scenes - con-
taining many disjointed shadow regions- our new method
is faster and more robust than others previously published.
The method delivers good performance on a variety of out-
door images.

1. Introduction

The presence of strong illumination variations in an im-
age, shadows in particular, have been shown to be prob-
lematic for a variety of computer vision algorithms. Track-
ing [7], scene analysis [8] and object recognition [11] are
all examples of problems where a single illuminant is de-
sirable. In most real-world applications, shadows are the
main example of such variations. Shadows are cast in an im-
age when an object lies in the way of the main illuminant.
Whether due to the scene geometry -fixed objects such as
buildings- or the conditions under which the image is taken
-such as using a flash-, the presence of shadows can not al-
ways be prevented.

In conventional photography, and with the advent of
cameras able to capture more than 8 bits per channel,
strong shadows also often characterize a high dynamic
range (HDR) image. HDR images cannot always be prop-
erly displayed on current monitors. If one can remove or
attenuate shadows in the image, the dynamic range can be
reduced and the image displayed.

In recent years, several methods have been proposed to
remove shadows from images. All of them require shad-
ows to be identified first. The first group of methods is
based on image sequences; in a sequence of outdoor im-

ages taken from the same viewpoint, the major differences
between images are due to illumination variations. This
idea, explained in [13] and [9], enables to obtain invariant
-independent of the illuminant- images and remove shad-
ows from surveillance camera images. Another method,
that works on single images, was proposed [4] and [3]. In
this work, invariant images are obtained by finding an im-
age that is orthogonal to the direction of intensity and color
change. Shadow edges are the difference between the edge
maps of the invariant and non-invariant images. Reintegrat-
ing the gradient field obtained by differentiating the image
and thresholding shadow edge gradients using a Poisson
equation yields a shadow-free image. These results have
recently been improved upon by constraining the problem
and using a Hamiltonian path based approach for the inte-
gration step [6].

We propose here to significantly simplify the framework
of [6] while retaining the same image quality. Our key in-
sight is that, once shadow boundaries have been identified
and closed, reintegration can be reduced to finding an ad-
ditive constant -per color channel- for each shadow region.
The constant is determined by looking at the pixels immedi-
ately adjacent to both sides of the shadow-edge and finding
the value that minimizes the difference between those pix-
els. Results show that this method gives images that are as
good as, or better than those obtained in [6] or [3], while
taking significantly less time than either method.

2. Background

Shadow-free images can be obtained in various ways. In
this work, however, we want to be as general as possible
and therefore consider the case of single color-images. Ad-
ditionally, we are concerned with obtaining high-quality (al-
most photographic) shadow-free or shadow-attenuated im-
ages. We will therefore focus on the work about single im-
ages proposed in [3].

Shadow Detection:Prior to removing shadows, we first
need to detect them. To this effect, we use the invariant
image method proposed in [3] with the additional “closed
region” constraint developed in [6]. Invariant -that is, re-
flectance only- images are first obtained by projecting the



image log-chromaticities in the entropy minimizing direc-
tion. Edge detection is performed on both the original and
the invariant image, the difference of the two edge maps is
used to identify shadow edges. Finally, the shadow edges
are completed since shadow regions are closed regions. An
illustration of the process is shown in Figure 1, we refer the
reader to [6] and [3] for more details about the procedure.

Figure 1. Left: Original Image, Middle: Invariant
image, Right: the resulting shadow edge.

Shadow Removal:Once detected, shadows can be re-
moved from images with two insights. Firstly, if 2 pixels
on both sides of the shadow edge have the same reflectance,
then they should have the same value once the shadow is
removed, i.e. their gradient should be equal to 0. Sec-
ondly, within the shadow regions, log ratios between pixels
are preserved when the shadow is removed; this assumption
being in line with most lightness algorithms. It is thereafter
assumed that all images are first transformed to the log do-
main and then exponentiated when the shadows have been
removed.

Shadow-free images can therefore be obtained by tak-
ing the derivatives of the original image, setting the shadow
edges derivatives to 0 and finally reintegrating the image.

Two different methods for reintegrating shadow-free im-
ages have recently been proposed. One reintegrates the im-
age by solving a Poisson equation, a 2-dimensional method
[4]. The other method uses random Hamiltonian paths and
1-dimensional integration [6].

2D Integration: In this framework, one assumes that
all the pixels along the shadow boundary have the same re-
flectance on both sides -later referred to as the smoothness
assumption. The method proceeds as follows: letI denote
the log of an image andS be the location of shadow edges
(S is a binary mask, i.e.Si = 1 if the pixel i is a shadow
edge,Si = 0 otherwise). The derivatives ofI are thresh-
olded according to a functionT (∇I) such that

T (∇I) =
{

0, for |∇I| ∈ S (1a)

∇I, otherwise (1b)

The shadow free image,I ′ is then recovered fromT (∇I).
Since the problem is over-determined (2 derivatives per

pixel) and thresholding implies the 2D function cannot be
reintegrated; one has to reintegrate in a least squares sense,
usually solving a poisson equation [5].

Reintegrating an image in such a fashion will lead to
a shadow-free image. Unfortunately, should reflectances

vary at the same location as shadow edges, a likely event
in real-world images, errors will occur. Due to the na-
ture of the reintegration, which minimizes errors in a least
square sense, the errors will be “distributed” across the im-
age, leading to global alterations of the image. Furthermore,
setting the derivatives of the entire shadow boundary to 0
will lead to smeared regions that necessitate additional pro-
cessing. An example of 2D shadow free images as well as
a close-up of shadow boundaries can be seen in Figure 2.

Figure 2. Clockwise: the original image ; the de-
tected shadow edges; a close-up on the edges show-
ing the single opening for 1D reintegration; the 1D
integration; a close-up on the shadow edge, note
the smearing effect; image reintegrated with the 2D
method

1D Integration: This method uses a random Hamilto-
nian path,p, along which the image is reintegrated in a 1-
dimensional manner. Using the same notations as above,
the shadow free imageI ′ is obtained by starting the integra-
tion at a non-shadow pixelp1 and adding the appropriate
derivatives (dI

dxor dI
dy , depending on the path direction).

I ′p1
= Ip1 (2)

I ′pi
= I ′pi−1

+ T (∇I)pi
(3)

To minimize both the occurrence and the visibility of
artifacts, the authors [6] further proposed that the shadow
edge should be crossed a single time -as it was argued that
the presence of reintegration errors is proportional to the
number of shadow crossings-, devising a specific random
Hamiltonian path in each case, as illustrated in Figure 2.
The problem is well posed since a single derivative per pixel
remains. Possible errors are localized, their only source be-
ing an incorrect thresholding, i.e. if the smoothness assump-
tion is violated . The non-visited pixels, i.e. shadow edges,
are not reintegrated but rather inpainted afterwards, which
produced better results. This method is however not triv-
ial to implement and moreover, in case of complex scenes
(many disjointed shadow regions), it can become difficult



to find a path that will yield few errors since the probability
of having an error is exponentially related to the number of
shadow regions [6].

3. Finding the Constant
Looking back at Figure 2 -top right- and Equation 5, one

can see that once the shadow boundary is crossed, no further
modification of the image occurs. For a given opening and
path, letP1 be the last pixel visited by the path before cross-
ing the shadow boundary andS1 be the first pixel visited
after the shadow boundary. What the 1D procedure does
is to setS1 = P1 (the derivatives between those points are
set to 0) and then reintegrates the shadow region using the
original derivatives. This is therefore equivalent to adding a
constant valuec = P1−S1 to the shadow region. While this
is mathematically exact, it is however not possible to assess
the correctness ofc with respect to the problem -namely,
does it remove shadows?

Let us now consider what happens at the exit of the
shadow region. Denote the last pixel visited in the shadow
region byS2 and the first pixel visited after exiting byP2.
By construction, after addingc, the value ofS2 becomes
S2 + c. Since the derivatives are also set to 0 when exiting
the shadow region,P2 is replaced byS2 + c. Error due to
noise, or a different relation between{P1, S1} and{P2, S2}
can thus be assessed by

error = P2 − (S2 + c) = P2 − (S2 + P1 − S1) (4)

A low error value is, however, not sufficient to validate the
constant. A simple, and yet not uncommon, example of
failure is the presence of sky at the shadow boundary -see
Figure 2 -top left. Sky being a very smooth region, the as-
sociated error will be low, even though the constant will not
be correct. The issue here is that there is a single point of

Figure 3. Constant values and error graphs.

failure, i.e. the constant is determined at a single location.

A standard method is to find the constantc that minimizes
errors in a least square sense. LetP be the array of pixels
just outside the shadow edge andS be the array of pixels
just inside the shadow edge, such as represented in Figure
3-bottom left. Let us also assume thatP andS have been
sampled such that their lengths are equal. We then have

c = min
a

‖P − S + a‖2 (5)

In doing so, one however assumes that a (large) majority
of the shadow boundary has no coincident material edges,
which is a similar assumption to the 2D integration method
previously presented. When this assumption is violated,
significant errors can occur, as illustrated in Figure 4.

Figure 4. Shadow free images using different meth-
ods to compute the constants.

To find an appropriate constant, we have to look at in-
trinsic properties of shadow to non-shadow transitions [10].
First, if there is a shadow boundary between two pixels that
have near-equal reflectance, then in RGB space:

Knon−shadow > Kshadow; K = {R,G,B} (6)

Secondly, going back to the sky example we know that out-
door shadows are caused by an object occluding sunlight.
We can then further constrainc to

Rc > Gc > Bc (7)

WhereRc, Gc, Bc are the red, green and blue values ofc
and the> relations are obtained by taking into account the
spectra of sun and skylight as well as generic camera sen-
sitivities [12]. If one wants to remove shadows that occur
in a very specific environment (from a light source point of
view), then additional constraints can be added to the value
of c. While the above constraints are simple, we found they
greatly helped in obtaining a correct value ofc.

We now have all the elements to findc. We first use
Equations 6-7 to weed out implausible values -eg. in the
rightmost part of Fig. 3 top-right. Then, taking noise into
account, we select the constant at locations where the error,
Equation 4, is minimum. Finally, in order to avoid the sin-
gle point of failure problem, we averagec over the 1% of
locations where the error is minimum.

When the image admits more than one shadow region,
we repeat the procedure to find a specific constant per re-
gion. This will lead to better results than using only a single



value of c for all shadow regions. The reason is that, in
removing shadows, it is assumed that the lighting field is
uniform within the shadow region. While this assumption
usually holds, shadow regions located in various parts of the
image may well have significant lighting differences. It is
therefore worthwhile to treat different regions separately.

Finally, we have to consider what happens to the shadow
boundary. In [3], all the derivatives that belong to the
boundary are set to 0. Some structure is then recovered us-
ing diffusion methods and edge growing [1]. In [6] however,
shadow edges are not reintegrated but are left blank. The
missing information is then inpainted, using the method set
forth in [2], using elements present in the rest of the image.
The main issue in our case is that the transition between
shadow and non-shadow regions is rarely immediate (i.e.
the shadow edges are thicker than 1 pixel). Accordingly,
this prevents us from using the same constant on the shadow
edges. We have tried interpolating the constant across the
boundary (for example, linearly going from 0 toc), but the
results were unsatisfactory. We therefore decided to inpaint
the boundary, using the method described in [2].

4. Results
Some results obtained with our method can be seen in

Figure 5. Despite the complexity of some of the scenes,
the shadows are correctly removed or attenuated. The lu-
minance levels on both sides of the (former) shadow are
almost identical and the color balance is adequate. One of
the main advantages of this method, though, is its speed.
Indeed, given the shadow edges, the problem is reduced to
finding a constant under 2 simple constraints. Such a task
can easily be done in real time (even inMATLABtm).

In contrast, the 2D reintegration method requires inverse
Fourier transforms that are 4 times the size of the image and
the 1D method needs several different Hamiltonian paths
per shadow region.

5. Conclusion
The proposed method is a simple, fast and efficient

way to remove shadows from images once the location of
shadows has been found. We show that the shadow re-
moval problem can be reduced to finding a constant at
the “smoothest” locations of the shadow edge under sim-
ple constraints. The results show that this method outputs
high quality images where the shadows are either removed
or strongly attenuated.

In case of indoor images, or of shadows created by other
illuminants, one could theoretically extend the proposed
framework by, for example, further constraining the behav-
ior of the constant if required in a specific experimental
setup.
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