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Abstract

The 2 pass raster segmenter is simple, fast and is often
quoted in the literature. Unfortunately, it tends to over-
segment images even in the presence of small amounts of
noise. In this paper we present a generalization of this ap-
proach where we discover regions by taking multiple ran-
dom paths through an image. This approach fares better
but still over segments an image. Yet, an analysis of region
density shows that the underlying image structure can be
discovered from the path based segmentation. Indeed, the
discovered edges are comparable to those discovered by
the widely used mean shift algorithm.

1. Introduction

From Land’s Retinex to scale-space processing [1], path-
based methods have often been used with success in im-
age processing and computer vision. Those paths can usu-
ally be divided in three categories: short random walks
(as in [2] and [3]), partially complete (in the sense that
they cover the entire image), such as Frankle MacCann
spiral path for retinex [4] or complete as for raster paths
for segmentation [5]. Most examples of complete paths
are instances of the more general class of Hamiltonian
paths, whose definition is “A path in a graph such that ev-
ery vertex is visited once and once only” [6] (or, in terms
of images we visit each pixel once and visit all pixels in
the image). A framework to derive random Hamiltonian
paths in images has recently been proposed in [7] and the
authors have used them successfully to remove shadows
from images. In this paper we present a framework for
color image segmentation based on Hamiltonian paths, in
order to obtain a simple yet accurate edge map of a color
image.

The problem of image segmentation has been studied
for a long time and has spawned a wide variety of ap-
proaches ([8],[9] and [10] among others). The best per-
forming algorithms currently make use of a combination
of color, texture and scale features and usually have many
of parameters that can be adjusted for optimum segmen-
tation. As a result, many of these algorithms are either
difficult to implement and/or computationally expensive
to use. One of the goals of this paper is to develop a seg-
mentation algorithm that is equally powerful to antecedent
methods but due to its simple path based implementation

is simpler and easier to implement.
We first introduce the 2-pass raster segmentation com-

monly cited in the literature. We then review the Fredem-
bach and Finlayson method to obtain random Hamiltonian
paths [7]. We then show how to use simple first and sec-
ond order statistics on color channels calculated along a
path to group similar pixels. After a single Hamiltonian
path through the image there are many line like segmented
structures (as oppose to desired regions). We group these
linear structures and discover arbitrarily shaped regions
by repeating our segmentation along different paths where
now we group together the linear structures. After a small
number of path segmentations we can discover arbitrarily
shaped regions. We provide a detailed discussion of the
convergence of our method.

Section 2 presents the standard two pass path based
raster segmentation. We also review how arbitrary ran-
dom Hamiltonian paths can be created and discuss our
path based segmentation idea. In section 3 we look at how
path based segmentation works in experiments and this al-
lows us to elaborate on the basic algorithm. Results on real
images are presented in section 4 for our path based ap-
proach and for the widely used mean shift algorithm. For
the images tested both algorithms provided broadly sim-
ilar performance, with the former being delivered much
more quickly. The paper concludes in section 5.

2. Background

2.1. Raster Segmentation (Sequential Labelling)

Sequential labelling is a technique used in computer vision
for efficient segmentation of images [5]. Two orthogonal
raster paths (such as the ones shown in figure 1) are used
sequentially to connect pixel belonging to a same region.
This method, first based on binary images, where deter-
mining the connectivity of pixels is straightforward [11]
was then extended to encompass grayscale and color im-
ages [10].

The sequential algorithm proceed as follows. The im-
age is examined according to the paths shown in figure
1. If neighboring pixels are connected, they are then as-
signed the same label. When a pixel can be connected to
more than one of its neighbors, the labels are considered
to be equivalent (and are therefore merged).

To determine whether neighboring pixels are similar



Figure 1: The 2 orthogonal raster paths used in the original se-
quential labelling method.

we will use Nayar and Bolle’s reflectance ratio criterion
(see eqn 1 below).

Ia − Ib

Ia + Ib
≤ θ (1)

This reflectance ratio, taken for image pixelsa andb has
the advantage that, for grey scale, it is independent of in-
tensity. And, if computed on R, G, and B separately the
triplet of ratios is independent of illumination [10]. And,
so, supports segmentations which are independent of the
lighting conditions.

2.2 Hamiltonian Paths

The problem of generating Hamiltonian paths in a general
graph has been shown to be NP-complete [12]. Images,
however, can be considered as a special class of graphs,
namely grid graphs. In [7], a method to find Hamiltonian
paths in such graphs in a linear time has been proposed.
Briefly described, Hamiltonian paths are found in 4 steps,
illustrated in figure 2. Downsampling (reducing the size of
the graph by a factor 4 (the image is reduced by half in the
x and y directions), finding a minimum spanning tree on
this downsampled graph, upsampling (increasing the size
of the graph by a factor 4) the tree and finally completing
the graph. Randomness can be ensured by weighting all
edges in the original graph with random weights prior to
computing the minimum spanning tree. Refer ro [7] for
a more complete description and proof that the method
always generates a complete Hamiltonian path.

Since this method can generate a large number of ran-
dom paths, we propose that can segment images with more
accuracy than the 2-pass algorithm: we can use multiple
paths to discover region connectivity. In the 2 pass ap-
proach to get large regions one needs to be “optimistic”
about the underlying image structure and so use a fairly
large threshold to determine pixel (and hence region) sim-
ilarity. With multiple paths we can be “pessimistic” and
use a smaller threshold since we are secure in the knowl-
edge that we can joint pixels in multiple different ways.
Using a large number of paths results in a area-like pro-
cessing of the image, despite it not being explicitly defined

Figure 2: From the original graph to the final Hamiltonian cycle,
all the steps used in creating such a path.

in the segmentation algorithm.
Finally, we note that while the paths can be efficiently

computed, they can also be pre-computed for a certain im-
age size. Thus the algorithm cost is the number of pixels
multiplied by the number of paths. Typically, the latter is
small and so the algorithm is very fast.

3. Segmenting Images

Let us now consider how images are segmented. Before
proceeding further we are interested in the plausibility of
our approach. If we an image with 2 regions that are hard
to segment can we automatically find the segmentation?

3.1. Convergence of the Algorithm

Let us create an image that consists of a double spiral.
The two spirals are 1 pixel wide, while the image itself is
of size 256x256, as illustrated in figure 3a. The first step
in sequential labelling is to label all pixels in the image
as belonging to a different region; here we have 256x256
pixels so we have 65536 different regions. We then recur-
sively use the different pre-computed paths to process the
image, using the color reflectance-ratio merging criterion
[10], i.e. 2 labelsa andb are equivalent if

max{Ra − Rb

Ra + Rb
,
Ga −Gb

Ga + Gb
,
Ba − Bb

Ba + Bb
} ≤ θ (2)

Where we definedθ to be 0.035
If the structure of the different paths is random enough,

and if the set of paths is complete with respect to the image
size, then the segmentation should converge towards two
distinct labels. Figure 3b displays the number of distinct
labels (i.e. regions) after each path. After 29 paths, the al-
gorithm has converged to 2 distinct regions, each of them
containing one spiral. Due to the random nature of the
paths, we repeated this experiment 50 times. The mean
number of paths of convergence was 26 and the highest
number was 31. From this example, it can be inferred that
since “real” images generally have much larger regions,
the algorithm should then converge in most cases with less



Figure 3: (a): The spiral figure used in the convergence experi-
ment. (b): The curve showing the actual convergence.

paths. For equivalently sized images, we have used 15 dif-
ferent paths, since the improvement in quality beyond was
not significant.

Moreover, it is simple matter to prove convergence in
general. Consider we have an image with distinct regions
where each region can be discriminated from one another
using the ratio test. The segmentation fails if aftern iter-
ations we have two adjacent pixels that should belong to
the same region but are labelled differently. By assump-
tion, these adjacent pixels satisfy the ratio criterion and so
if we considered a path that joined these pixels together
then these pixels (and their associated regions) would be
merged. Since our paths are generated randomly this must
happen given enough paths.

3.2. Segmentation Experiment on a real image

We are now interested in the detail of our algorithm. How
will it perform on a real image? Top left of Figure 4 shows
a simple image with well defined colour regions. Let us
now consider what happens when we recursively apply
out path-based method using the ratio criterion. Figure
4 shows the evolution of the segmentation for an image
(each white pixel is considered to belong to an edge be-
tween regions, the black areas are the regions). These dif-
ferent steps picture how the segmentation converges to-
wards stability, usually after 15 steps or so. While the
convergence is fast, as shown in Fig. 4 curve, it is really
the steps between paths number 10 and 15 that effectively
denoise the segmentation.

The method chosen to represent the segmentation is
one based on regions density. The underlying assumption
of this method is that a segmented image is composed of
several regions within which the pixels have the same “la-
bel”. The region density is obtained by sliding a small
n × n window over the image (in all our experiments,
n = 3). The number of different regions (or labels) within
this window expresses the region density for the center
pixel. If we look in a small window and there is a single
underlying region then we say this window has density 1.
If there are two regions then we have density 2 and so a
small edge, up to a region density of 9 (the maximal value)
where all pixels within the window belong to a different

Figure 4: From left to right and top to bottom: The original im-
age and the segmentations after 1 (all white since the first step is
to label all pixels differently), 2, 5, 10 and 15 paths respectively.
The curve on the 3rd row shows the speed of convergence for
this particular image.

region.
By definition, all pixels within a region have the same

value (labels). A region density higher than one is there-
fore indicative of the presence of an edge. Additionally,
since the segmentation is based on color ratios, we can en-
counter very high region densities in case of fast-changing
reflectances, such as in grass or vegetation regions. How-
ever, most of the pixels belonging to such regions will ap-
pear solid white on the density map and edges can also
therefore be extrapolated. This explains the fairly large
regions among tree leaves and grass in figure 8.

We can use this approach because, in effect noise is
not a significant factor in our edge maps. An illustration
can be seen in figure 5, where the region density of the
original image is shown on the left and the right image is
the edges obtained with our method. The original image
contains significant noise, but the use of several random
paths in effect denoised the image while preserving edge
information.

4. Results

We first compare our results with the ones obtained us-
ing the 2-pass raster scan method. From the convergence
curves previously shown, we see that the main reduction
in the number of regions occurs within the first step. We
might therefore expect both methods to deliver similar num-
ber of regions and, using the density approach described
above, the segmented images would have similar edge rep-
resentations. The results, displayed in figure 6 are miti-



Figure 5: Left: region density of the original image. Right: re-
gion density of the segmented image.

gated. While the strong edges of the image are present in
both results, we also see that the edge density map for the
raster segmentation is much noisier. And, this shows that
it has not merged regions as effectively as our multiple
path approach.

Figure 6: Left: region density of the raster segmented image.
Right: region density of the segmented image.

Figure 7 and 8 show results obtained with a variety of
images. In figure 7, the first column contains the origi-
nal images and the second edges obtained with the 2-pass
raster approach. In figure 8, the first column are the edges
obtained with our method while the second column are
edges obtained with the widely used meanshift [9] algo-
rithm (which we used with the default parameters).

From these results, two main aspects can be observed.
The first one is that, as previously thought, the results
from our algorithm are an improvement over the origi-
nal sequential labelling formulation problem. The sec-
ond one, when comparing our results to meanshift is that
while our algorithm is intrinsically much simpler, the re-
sults are broadly comparable. Both the 2-pass approach
and our method also contain large vegetation regions com-
pared to the meanshift algorithm. Since those regions are
rapidly changing reflectance-wise, their underlying region
density will be high. Filtering the region density map with
a simple point-based high pass filter allow us to extract
edges for both black (low density) and white (high den-
sity) regions. The resulting edges therefore oversegment
some parts of the image, while undersegmenting others.
The only drawback however, is the presence of noisy re-

Figure 7: 1st Column: Original images, 2nd column: edges ob-
tained with the raster method

gions that can be explained by the fact that we only use
local color information to merge different labels/regions.
We are currently developing second order metrics (rate of
change within an area) in order to “clean up” the segmen-
tations and obtain finer segmentations for highly textured
regions.

5. Conclusion and Future Work

Up to this point, only first order statistics have been used
in our segmentation framework. The obtained edges are,
while accurate, sometimes either too thick or too noisy
compared to the size of segmented regions. In [10], Nayar



Figure 8: 1st Column: Edges obtained with our method, 2nd
column: edges obtained with the meanshift algorithm

and Bolle discarded noisy or small regions in order to fo-
cus only on “valid” regions. Here, we however would like
to obtain a full segmentation of the image. To improve
current segmentations, one will have to look at higher or-
der statistics, such as the rate of changes, in order to ac-
curately detect and segment textures without adding too
much complexity.

The 2 pass raster segmenter is simple and fast and is
often quoted in the literature. Unfortunately, it tends to
oversegment images even in the presence of small amounts
of noise. In this paper we present a generalization of this
approach where we discover regions by taking multiple
random paths through an image. This approach fares bet-
ter but still over segments an image. Yet, an analysis of re-
gion density shows that the underlying image structure can
be discovered from the path based segmentation. Indeed,
the discovered edges are comparable to those discovered

by the widely used mean shift algorithm
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