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Abstract

The sieve is a morphological scale-space operator that filters an input signal by
removing intensity extrema at a specific scale. In images, this processing can be
carried out along a path -the 1D sieve- or over a connected graph -the 2D sieve.
The 2D version of the sieve generally performs better; it is however much more
complex to implement.

In this paper we present the 1.5D sieve, a Hamiltonian path-based version of the
sieve algorithm that behaves “in between” the 1D or 2D sieve algorithms, depending
on the number of paths used. Experiments show that its robustness to the presence
of noise and its performance in texture classification are similar to the original 2D
sieve formulation, while being much faster and simpler to implement.

1 Introduction

The sieve algorithm uses morphological filters to remove signal extrema at
different scales. The filters used are successive max and min operators that
are applied on windows of different sizes; the size of the window corresponds to
the sieving scale. The sieve output is causal: edges vanish as the scale increases
and no new image structures, such as edges or extrema, are introduced [4].

Morphological scale-space operators have been successfully applied to vari-
ous areas of image processing, such as image denoising [13,23], segmentation
[6,12], and texture classification [20,21]. In the latter case, while the sieve out-
performed other texture classification algorithms, the optimal version to use
(1D or 2D) depends on the type of texture analysed. Additionally, sieves have
also shown to be very resilient to noise [17].
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This paper presents the 1.5D sieve, a path-based algorithm that behaves in
between the 1D and 2D sieves. The 1.5D sieve is strictly equivalent to the 1D
sieve when a single path is used, and is equivalent to the 2D sieve when a large
number of Hamiltonian paths are used. The 1.5D sieve, being a path-based
approach as opposed to an connected-area approach, is much less complex than
the 2D sieve, both from a mathematical and implementation perspective.

We illustrate the performance of our algorithm by replicating the experiment
of Harvey et al. on the sieve’s robustness to noise [17], and Southam and
Harvey’s experiment on texture classification [19]. In both cases, we show
that the 1.5D sieve results are comparable to the more complex 2D algorithm.

This article is organised as follows: Section 2 reviews the concepts of 1D and 2D
sieves, and introduces Hamiltonian paths. In Section 3, we describe our 1.5D
sieve algorithm. Section 4 deals with the theoretical equivalence of the 1.5D
sieve to the 1D and 2D algorithms. Results on noise robustness and texture
classification are presented in Section 5. Section 6 concludes the paper, while
Appendix A illustrates the random Hamiltonian path generation algorithm.

2 Background

The 1D sieve output Y of a signal X at a scale S is calculated in two passes.
In each pass, minima and maxima of length ≤ S are detected and removed.
The passes are:

Ytmp = min
f

(max
b

(X)) (1)

Y = max
f

(min
b

(Ytmp)) (2)

where f and b define a respectively forward or backward centred window of
size S + 1. The succession of equations (1) and (2) is also known as an M
sieve. The sieve can also be computed by removing maxima first, i.e., reversing
the order of eqs. (1) and (2). This operation is also known as an N sieve [2].
An illustration of the (M) 1D sieve algorithm is shown in Fig. 1.

The 2D sieve works on the same principle, but uses a more complex graph
connectivity-based approach where, for a 2D signal, extrema are detected and
removed if their connected area is ≤ S. This process involves complicated
“bookkeeping” because extrema can have complicated shapes (e.g., a “Q”-
shaped region with 100 pixels is an extrema when S = 100) and the connec-
tivity of the region itself, as well as all its neighbours, has to be kept at all
times. While efficient data structures can be used, creating and linking them
can be time consuming [4]. The 2D algorithm is illustrated in Fig. 2.
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Fig. 1. A 1D signal (first row) and the result of the sieve algorithm at scale one
after each of the passes described in equations (1) and (2)

Fig. 2. A synthetic image (left) and the output of the 2D sieve algorithm after the
minmax (middle) and maxmin (right) steps at a scale equivalent to the area of the
black region.

Complexity-wise, the 1D sieve is O(N) where N is the number of pixels in the
image. The 2D sieve’s complexity is higher than O(N), although no precise
figure has been given by the authors [3]. The 1.5D sieve has a complexity
of O(MN), where M is the number of paths used (typically 20-30, and thus
M << N).

Other scale-space approaches propose using a tree structure, rather than a pla-
nar connected graph, such as Salembier and Garrido Max tree [18] or Bangham
et al. sieve trees [6,5,7]. Their complexity varies between O(GN) for the max-
tree (where G is the number of gray-levels in the image) to O(N2logN) for
other approaches [14]. For a detailed review of these algorithms and compar-
ative performance, we refer the reader to [14].

2D sieves frequently use graphs to represent images, a process illustrated in
Fig. 3. On this graph representation, Hamiltonian paths are defined as: “a path
in a graph such that all vertices are visited once and once only.” [11]. Examples
of Hamiltonian paths are illustrated in Fig. 3(b) and (c). These paths are used
to process an image in a one-dimensional manner; indeed, raster-type paths
(a sub-class of Hamiltonian paths) are the ones generally used by the 1D sieve
algorithm when applied to images.
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Fig. 3. Schema of a 3x3 image and corresponding graphs. (a): The graph associated
with the image. (b): A raster path over the graph. This type of Hamiltonian path is
used in the original 1D sieve. (c): A more general Hamiltonian path over the graph.

3 The 1.5D Sieve

While the 1D sieve is simple, it is of limited use in image processing. The 2D
sieve, on the other hand, is more versatile but requires complex data struc-
tures that have to be created and maintained. We propose that using multiple
random Hamiltonian paths in a conservative framework can approximate the
behaviour of the 2D sieve while retaining the simplicity of the 1D algorithm.

The 1.5D sieve algorithm proceeds as follows: let X be the input image and
let us compute M random Hamiltonian paths: p1, . . . , pM over X using the
method of [10] (see Appendix A for more details). We define pi(X) as the
“vectorisation” of X along the path pi (this property is illustrated in Fig. 4).

The 1.5D sieve algorithm is defined as:
——————————

pi(y
i
tmp) = min

f
(max

b
(pi(X))), i = 1, . . . , N (3)

Ytmp = min
i∈N

(yi
tmp) (4)

pi(y
i) = max

f
(min

b
(pi(Ytmp))), i = 1, . . . , N (5)

Y = max
i∈N

(yi) (6)

——————————

Where yi
tmp and yi are the images resulting from sieving along the path pi

(illustrated in Fig. 4).

If i = 1 (i.e., there is only a single path), the 1.5D algorithm is exactly equiv-
alent to the 1D sieve: eqs. (3) and (5) are equal to eqs. (1) and (2), while eqs.
(4) and (6) have no effect.
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However when i > 1, eqs. (4) and (6) act as a “conservative check”. The
algorithm will consider that a given region is an extremum only if all the M
paths agree. This behaviour is illustrated in Fig. 4, where two paths consider a
region to be an extremum at a certain scale while a third path does not. This
conservative behaviour is in accordance with the sieve property of causality:
no new extrema must be created [2].

Note that our 1.5D sieve algorithm is readily parallelisable; indeed, the steps
described by eqs. (3) and (5) can be carried out independently for each of the
M paths, their output being combined at the end. This is not the case with
the 2D sieve

To create the random Hamiltonian paths we use the method presented in [10],
an overview of which is given in Appendix A. This method was chosen because
its complexity is linear with respect to the number of pixels in the image and,
importantly, because it enables many different random paths over a single
image. In contrast, other methods either find a single path per image [1,9] or,
like the Christofides algorithm, have a O(N2) complexity [8].

4 Equivalence of the 1.5D to the 1D and 2D sieves

As seen in the previous section, when a single path is used, the 1.5D formu-
lation is strictly identical to the 1D sieve. The equivalence of the 1.5D to the
2D sieve is achieved if every region of an image admits a path that visits all
its pixels sequentially, and, if said paths can be found.

Let I be an image and I2 be the expanded (by a factor of 2) version of I. Let R
be a region of I; it was shown in [10] that R2, the expanded version of R admits
an Hamiltonian circuit. Let us now define R to be the complement of R in I.
Since R is itself a region of I, it follows that R2, its expanded equivalent, also
admits a Hamiltonian circuit. A schema illustrating these variables is shown
in Fig. 5.

Moreover, in 4-connected grid graphs, two disjoint, adjacent Hamiltonian cir-
cuits can be merged into a single, encompassing one [8]. It follows that there
exist at least one Hamiltonian circuit over I2 such that the whole of R2 will
be explored sequentially. By using that circuit as a path in the 1.5D sieve
algorithm, we ensure that the exact scale of R2 will be found.

The considered algorithm to generate Hamiltonian paths uses a spanning tree
construction; it is able to generate as many different paths over I2 as there are
different spanning trees in I (for more details see [10] and Appendix A). Thus,
generating all possible paths on I2 ensures the exact scale of every region is
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Fig. 4. An illustration of the 1.5D algorithm using 3 different paths. The paths are
impressed over a binary image (gray=1, white=0); the square represents the starting
point of the path, the triangle the end. We observe that when paths disagree the route
of conservatism is chosen. This is to ensure that no additional image structures will
be created, in accordance with the sieve decomposition theorem.

found. In this limiting case, the 1.5D sieve is therefore equivalent to the 2D
algorithm.

This is a theoretical equivalence only, because the number of possible paths,
Mmax, is commensurable. In [22] it has been shown that for a grid graph
comprising N vertices (i.e., an image with N pixels), there were e1.16N possible
spanning trees, so Mmax = e1.16N , which considering the usual size of images
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Fig. 5. A 3 × 4 image I and its 6 × 8 expanded version I2. A sample region R of
I and its corresponding expanded version R2 are shown, as well as their respective
complements R and R2.

is impossible to compute.

In reality, a number of paths equal to the number of an image’s regions NR

is sufficient to correctly assess the scale of every region, but this number can
still be quite large and its computation expensive. In practice, we will use M
paths where:

1 < M < NR << N << Pmax (7)

Our algorithm will therefore behave in between the 1D and 2D sieves.

5 Experiments

In this section, we evaluate the performance of the 1.5D sieve algorithm. Fig. 6
shows the output of the 1D, 2D and 1.5D sieves at different scales and for
different numbers of paths.

5.1 Robustness to Noise

The first experiment is to assess the 1.5D sieve’s robustness to noise. To do
so, we use the framework of Harvey et al. [17] where the variance of scale
estimation is computed in the presence of Gaussian and Impulse noise.

Sample images from this test are shown in Fig. 7. The baseline image consists
of a grayscale disc cast on a uniform background. The diameter of the disc
is 50 pixels and its amplitude is 144. The size of the background target is
100 × 100 pixels and its amplitude is 112. This image is then corrupted by
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Fig. 6. The results of sieving an image with the 1D (first column), 1.5D (with 5, 10
and 30 paths) and 2D (last column) sieve at various scales. The size of the image
is 64×64; for the 1.5D sieve, we see that the more paths used, the closer the results
are to the 2D algorithm.

either uncorrelated Gaussian noise (µ = 0, σ = 24) or, alternatively, Impulse
noise, where pixels are replaced with a random value in the range [0,255] and
a noise density of 0.2.

We then sieve the image at all possible scales; the scale at which the largest
area is detected is assumed to be the scale of the disc (which is true in the
noiseless case). The disc centre is then calculated as the centre of mass of
the detected area. Repeating this experiment over 150 instances of noise, we
calculate the standard deviations of the estimated circle position (x and y)
and scale: σx, σy and σs. The smaller this standard deviation, the more robust
the algorithm is in the presence of noise.
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Fig. 7. The target image used in the robustness experiment (left); corrupted with
Gaussian noise (middle) and Impulsive noise (right)

Gaussian Noise Impulsive Noise

2D 1.5D5 1.5D10 1.5D30 2D 1.5D5 1.5D10 1.5D30

σx 0.280 9.3 5.32 0.270 0.0425 9.12 4.76 0.046

σy 0.243 9.28 5.4 0.22 0.0416 9.32 4.68 0.0472

σs 55 235 102 48 3.91 202 47 4.01
Table 1
Standard deviations of scale and position estimates in the presence of Gaussian and
Impulsive noise for the 2D sieve and the 1.5D sieve using 5, 10, and 30 paths.

Table 1 shows the results for both the 2D and the 1.5D (using 5, 10 and 30
paths) sieves. The difference between the two algorithms diminishes as more
paths are used. With 30 paths the 1.5D sieve is almost equivalent to the 2D
algorithm.

5.2 Texture Classification

The second experiment compares the performance of the 1.5D with the 1D
and 2D sieves for texture classification. A comprehensive review of state of
the art algorithms carried out in [19] showed that, for the Outex TC 00000
and Outex TC 00010 test suites [15,16], the best performing algorithms were
the 1D and 2D sieve, respectively. The test suite TC 00000 is rotationally
invariant and uses leave-out half cross validation (in all the Outex test suites
the training and testing sets are provided). The TC 00010 training set consists
of 480 textures from 24 classes, imaged at a fixed orientation of 0o. The testing
set comprises 3840 images of the same 24 classes but the textures are rotated
by 5o, 10o, 15o, 30o, 45o, 60o, 75o and 90o. Consequently, one path will not
suffice to discriminate between rotated textures. For this test, the 1D sieve
feature vector is actually composed of six different raster-type paths oriented
at every 15o [19]. Sample textures are shown in Fig. 8.
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Fig. 8. Sample textures from the Outex TC 00000 suite (first row) and a texture
under various orientations in the Outex TC 00010 suite (second row).

The texture analysis is carried out using scale granularity. For each algorithm:
1D, 1.5D and 2D sieve, the texture images are sieved at scales 1, 2, 5, 13 and
30. From these six images (the original one and the five sieved images), we gen-
erate granularity images by taking the absolute difference of two consecutive
scales: original and scale one, scale one and scale two, scale two and scale five,
etc. The first three moments (mean, standard deviation, and skewness) of each
granularity image are then calculated, thus resulting in a 15-dimensional fea-
ture vector. In the 1D case, since there are six independent paths, the feature
vector will have 90 entries.

A feature vector is created for each image in the training set, then, each test
image’s feature vector is calculated and its Euclidian distance to the training
data is used to determine which class the test image belongs to. A more
detailed explanation of this procedure can be found in [17].

In the 1.5D case, since the textures are strongly oriented, we use “masks”
to guide the paths. Specifically, we create gradient images that will be the
input of the random Hamiltonian paths algorithm, i.e., the gradients of the
masks will be the labels of the graph’s edges prior to computing the minimum
spanning tree (see Appendix A for details). As a result, the paths will loosely
adopt the masks’ orientation. In this experiment, we will use 24 paths based
on 12 rotations of the masks at regular angles (we create 2 paths per angle).
Some orientations of the masks are shown in Fig. 9.

The 1.5D sieve algorithm therefore yields a 15-dimensional feature vector,
the same size as the 2D sieve, that is used to classify textures. The Outex
sets have defined training and testing procedures that we follow. The results,
Table 2, illustrate that the 1.5D sieve algorithm performs “in between” the
1D and 2D methods and displays a generally good performance. Indeed, the
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Fig. 9. Various orientations of masks used in the creation of random Hamiltonian
paths.

TC 00 Success Rate vector length TC 10 Success Rate vector length

1D 0.998 90 1D 0.718 90

1.5D 0.99 15 1.5D 0.902 15

2D 0.95 15 2D 0.943 15
Table 2
Recognition rates for both the rotationally invariant and variant Outex sets with 1D,
1.5D (using 24 paths of various orientation) and 2D sieves.

1.5D sieve’s average performance over both texture sets is almost identical to
the 2D algorithm and much higher than the 1D sieve.

6 Conclusion

We have shown that multiple random Hamiltonian paths could be used in the
sieve framework. Using multiple paths and adopting a conservative approach,
a 1.5D sieve algorithm (named as such because it behaves as either the 1D or
2D sieve in its limiting case) was developed.

Advantages of our algorithm are that it only takes about 20 lines of Matlab
code to implement: the 2D sieve algorithm is considerably more complex to
code. Also, the 1.5D sieve algorithm is readily parallelisable and has a linear
(with the number of pixels) complexity.

Results using relatively few paths show that it can be as robust as the 2D
sieve while performing comparably in the task of texture classification.

Appendix A

In this appendix we give an overview of the random Hamiltonian path algo-
rithm. For a detailed analysis and a proof that the algorithm indeed always

11



yield a Hamiltonian path, we refer the reader to [10].

Fig. 10. (a): the considered graph G. (b): a spanning tree T obtained by weighting
G randomly and an illustration of its “walk around” (arrows). (c): the expanded
version of T where the connectivity between the groups of nodes is kept. (d): the
Hamiltonian path, obtained by “walking” in the same manner than on T . Note the
shape similarity between the Hamiltonian path and the minimum spanning tree.

Let us consider an image I and its graph representation G. The first step is
to construct the minimum spanning tree of G: T . The construction of T is
important since the shape of the Hamiltonian path depends on the shape of
T . In general, we want this shape to be random; this randomness allows us to
derive the 1.5D equivalence to the 2D algorithm shown in section 4.

To ensure randomness, we weigh the edges of G with random weights prior
to computing T . In the texture classification experiment, we used a more
“structured” approach and used the masks’s gradients as weights. The root
of the spanning tree is always chosen at random, we have found it to be of
negligible influence in our experiments.

To find the Hamiltonian path that corresponds to T , we first expand T and
then complete the missing edges by “walking around” the tree. An illustration
of the whole procedure is shown in Fig. 10, while more details about the
algorithm and its linear complexity can be found in [10].
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