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Abstract

For certain databases and classification tasks, analyzing images based on region features instead of image features

results in more accurate classifications. We introduce eigenregions, which are geometrical features that encompass area,

location and shape properties of an image region, even if the region is spatially incoherent. Eigenregions are calculated

using principal component analysis (PCA). On a database of 77’000 different regions obtained through the segmentation

of 13’500 real-scene photographic images taken by non-professionals, eigenregions improved the detection of localized

image classes by a noticeable amount. Additionally, eigenregions allow us to prove that the largest variance in natural

image region geometry is due to its area, and not to shape or position.
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I. Introduction

Many imaging applications, such as automatic color correction (ACC) or content-based image re-

trieval (CBIR), are based on successful image classification [2, 4, 14, 18]. It is evident that the perfor-

mance of these algorithms is directly linked to the performance of the classification. Thus, in order

to be effective, image classification algorithms need features that well express relevant image prop-

erties. These features are often calculated based on the whole image. However, dependent on the

database and task, a region-based approach that uses more localized information can improve image

classification results [5–7,13].

In this paper, we introduce eigenregions, which are geometrical features that encompass area, lo-

cation and shape properties of a region. Eigenregions are obtained by analyzing segmented image

regions with Principal Component Analysis (PCA). Principal component analysis has already success-

fully been implemented in image classification for many tasks (see [15, 19] for examples), but usually
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on the whole image. As opposed to other geometrical region features [8, 10, 17], eigenregions can be

used and result in significant classification improvement even if the image regions are spatially inco-

herent. They are also visually significant and computationally efficient. Another key result obtained

with eigenregions is that for a large dataset of natural images, the largest variance in region geometry

is due to the area and not to shape or position.

We tested the performance of eigenregions in an image classification experiment, where the goal

was to correctly identify semantic image classes, such as “blue sky,” “skin tone,” and “vegetation.”

The data set consisted of 13’500 real-scene photographic images taken by non-professionals. After

segmenting the image into regions, we calculate region features, classify the regions, calculate the

corresponding image features, and finally classify the images (see Fig. 1). We found that the addition

of eigenregions to the feature vector improves region classification results for localized classes, i.e. for

region classes usually localized in a specific part of an image, such as sky regions. We also show

the relevance of eigenregions by classifying regions using only eigenregions as features, where they

achieved a very respectable success rate. Finally, the image classification rate based on region features

is significantly better than the classification based on image features only.

This article is organized as follows: Section 2 discusses the image segmentation algorithms used.

Section 3 discusses the drawback of existing geometrical features, explains how eigenregions are ob-

tained, and demonstrates their significance. Section 4 illustrates the usefulness of eigenregions for

region classification, Section 5 explains how to obtain image classification from region classification,

and Section 6 concludes the article.

II. Image Segmentation

To be able to extract region features, images need first to be segmented into meaningful regions.

We chose the Dominant Colors in Lab (DC Lab) method, based on the MPEG-7 guidelines [12]. It

uses a k-means powered algorithm to segment images according to (CIE) Lab clusters [21]. The k
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Fig. 1. This figure illustrates the major steps of the classification framework. First, the image is segmented into several
regions. Using region-specific features, the regions are classified in several semantic classes. The results from region
classification are then used to obtain a robust image classification.

Fig. 2. An image segmented with edgeflow (middle) and DC Lab (right). Contrarily to Edgeflow, DC Lab regions,
represented by different gray levels, are not spatially coherent.

parameter, representing the maximal number of possible clusters, is fixed to 8. Arguments for using

this algorithm over other available ones [1, 11] include its computational speed (real time processing)

and its ease of use, while still providing good quality segmentation. However, DC Lab regions are

not spatially coherent (see Fig. 2), which prevents the use of many existing geometrical features (see

Section III).

For comparison purposes, we also calculated eigenregions with image regions obtained via edgeflow

segmentation [11]. Since edgeflow regions are visually different from DC Lab, we compared eigenregions

to find if the geometrical characteristics of the regions are due to the segmentation algorithm or not.

We found that the eigenregions are similar in both cases, suggesting that these structural features are
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independent of the segmentation. The results presented in the rest of the article are based on DC Lab

regions.

III. Eigenregions

One of the major requirements for a robust classification is to have a set of relevant and reliable

features that will conveniently describe a region. Color and texture features have received far more

attention and usually perform better than geometrical features. It was found that the latter can either

be too general or too precise [10]. Some geometrical properties, such as region position, does not

in general fulfill continuous or gaussian assumptions required by some classification algorithms [17].

Moment analysis could be used, but it is difficult to determine a priori how many are necessary for

a good classification [8, 10]. Another drawback is that if the image segmentation algorithm results in

regions that are not spatially coherent, the perimeter or radii of a region cannot be used as parame-

ters [3]. Other geometrical properties could be utilized in this case, such as the compactness or the

positions of a region in the image. These features are, however, too limited to improve an already

high classification rate on our image database [5], whereas the proposed eigenregions do significantly

improve the image classification (see Section IV).

Eigenregions are obtained by calculating the principal components of the region locations. The seg-

mented images have a size of 64×48 (3072) pixels, resulting in a dimensionality too large to undertake

a PCA. We therefore started by downsampling the regions to a 5 × 5 area, such as shown in Fig. 3.

Since the area of interest is the coverage of a pixel by a region, the downsampling procedure determines

which percentage of a new “pixel” was originally covered by the region. Let R be a region, I the image

to which the region belongs and ρ a pixel. Consider the downsampling procedure:

∀ρ ∈ I : I(ρ) = 1 if ρ ∈ R, 0 otherwise

Idown(i) =
1

β

β∑

j=1

I(β(i− 1) + j)
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Fig. 3. Downsampling of a region (left) to a 5×5 image. The grey values of the down-sampled image display proportional
coverage, from 100% (white) to 0% (black)

where β = b3072
25
c is the downsampling factor and Idown is the downsampled image that will be used

in the principal component analysis. Note that we investigated a number of downsampling factors,

ranging from 3 × 3 to the entire image. Downsampling of 5 × 5 and higher lead to the same visual

and mathematical results. We present the results for a 5 × 5 downsampling, which is the most

computationally efficient implementation.

The eigenregions are then calculated on a set of 77’776 (N) regions obtained via the segmentation

of 13’500 real-scene photographic images taken by non-professionals, i.e. consumer images.

The general PCA analysis is as follows: let X be the data matrix (N vectors of length 25) and

let X̄ (1×25) be the mean over all observations of X. Y is defined as X with X̄ subtracted from

each of its columns. The covariance matrix is C = Y · Y T , and the single value decomposition of C

yields C = V · Λ · V T , where V is the eigenvector matrix and Λ is the diagonal matrix containing the

eigenvalues.

Using this method, the first eigenfeature (the one corresponding to the largest eigenvalue) will be in

the direction of the largest variance. Of importance to the classification is the fact that the eigenvectors

are orthogonal. This implies that they can all be used as features in the selection process since they

are independent.

Fig. 4 shows the 25 eigenregions obtained using this method. The reconstruction rates can be

observed in Fig. 5. From a visual point of view, a semantical meaning can be given to the first 5

eigenregions. The centered vertical and horizontal split (eigenregions 2 and 3) are due for the most

part to landscape photographs having a horizon line. Eigenregions 4 and 5 represent the distinction

between an object and a background. Since those distinctions strongly depend on the nature of the
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Eigenregions with mean removed from data

eigen2 eigen3 eigen4 eigen5

eigen6 eigen7 eigen8 eigen9 eigen10

eigen11 eigen12 eigen13 eigen14 eigen15

eigen16 eigen17 eigen18 eigen19 eigen20

eigen21 eigen22 eigen23 eigen24 eigen25
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Fig. 4. DC Lab eigenregions. Coverage values range from -1 (black) to +1 (white). Those regions express the most
common structure of segmented images. Relevant semantic regions include top/bottom (eigen 2), left/right (eigen 3)
and various center/surround interactions (eigen 4 and 5).
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Fig. 5. Eigenregion Reconstruction Rates.

photographed object (shape, color, sharpness, etc.), it seems normal that those regions come after the

landscape-type ones, as the latter are much more common in real-scene photography. The remaining

eigenregions cannot easily be given semantic meaning. One explanation is that DC Lab also outputs

a lot of small sized regions that can appear noisy when displayed as such.

Interestingly, the first eigenregion appears to be a “mean.” Recall that the mean of all regions was

removed prior to the principal component calculation. Thus, the largest variation of the regions is in

the direction of the mean, even though it is removed. By letting C = X ·XT instead of Y ·Y T , we can
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Fig. 6. DC Lab “eigenregions” without the mean removed from each column of X. The overall structure of the regions
does not significantly change, indicating that the greatest variance of the data is in the direction of the mean.

apply a singular value decomposition instead of a standard principal component analysis to the data

set. The results of this method are illustrated in Fig. 6.

Comparing Fig. 4 and Fig. 6, we can observe that removing the mean from the data does not alter

the obtained eigenregions. Given that the union of an image’s regions is the image, we can compute

the average region size by dividing the total number of images by the total number of regions. In

our case, we have 77’776 regions from 13’512 images, yielding a value of 0.17. This value is not small

enough to justify the fact that removing it bears no influence on the final result.

We can prove that for our experimental set-up, the greatest variance of a region’s structure is in the

same direction as the mean. Let X, X̄, Y and N be as previously defined. From the singular value

decomposition, we have:

X ·XT = U ·D · UT =
∑

dii · ui · uT
i (1)

Y · Y T = V · Λ · V T =
∑

λii · vi · vT
i (2)
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Expanding eq. 2 yields:

Y · Y T = (X − X̄eT) · (X − X̄eT)T (3)

= XXT −XeX̄T −XTeTX̄ −NX̄X̄T (4)

= X ·XT −N · X̄ · X̄T (5)

where e is a vector of size 1×25 containing only 1’s. If the first eigenvector is in the same direction as

the mean, then:

X̄ · X̄T = c · u1 · uT
1 (6)

where c is the norm of X̄. If removing the mean does not change the direction of the first eigenvector,

the other eigenvectors will not be altered either. The largest eigenvalue will decrease by N · c and the

other eigenvalues will stay the same. Using eq. 5, we have:

Y · Y T = X ·XT −N · X̄ · X̄T (7)

∑
λii · vi · vT

i =
∑

dii · ui · uT
i −N · c · u1 · uT

1 (8)

Which yields to, if the hypothesis is correct:

λ11 = d11 − c ·N (9)

∀i ≥ 2, λii = dii (10)

Calculating the principal components in both cases enables us to compare the eigenvalues and ex-

perimentally verify that it corresponds to the theory. Table I regroups the eigenvalues obtained with

and without the mean removed. The norm of the mean vector being c = 0.393, it is easy to verify

that λ11 = d11 − cN . The table entries also show that all the other eigenvalues are the same, within
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TABLE I
Eigenvalues for the two different variants, without (X ·XT) and with (Y · Y T) the mean removed.

For i > 9, the difference for λi is zero.

Λ (×) X ·XT Y · Y T Difference

λ1 79’835 49’225 30’610

λ2 24’075 24’032 43

λ3 11’108 11’085 23

λ4 8’519 8’519 0

λ5 6’324 6’310 14

λ6 4’680 4’680 0

λ7 3’588 3’587 1

λ8 2’794 2’794 0

λ9 2’714 2’709 5

numerical approxiamtion.

A. Area as the First Eigenvector

We have shown that the greatest variance in the data is in the direction of the mean. Our hypothesis

is that this variance is due to the relative area of a region. Eigenregions can be seen as features

encompassing shape, location, and size properties. It is, however, unlikely that either shape or location

are involved in this variance since the first eigenregion has no defined shape nor location.

We verified our assumption that the first eigenvector is an indicator of area, and not shape or

location by separating the regions according to their area. We define the relative area of a region aRi

as aRi
= ‖xi‖, where Ri is a region of the image I, and xi the ith column of X that corresponds to Ri.

We then create i histogram bins Ai such that:

Ai = [aRj
|bi ≤ aRj

≤ ci], ∀Rj (11)
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Fig. 7. First five eigenregions using PCA on 9 area bins. Bins from smallest to largest area are ordered from top
to bottom. The “mean-like” eigenregion does not appear anymore and the others are similar to those obtained on all
regions (see Fig. 4 and 6)

Using the area distribution of the regions, we obtained 9 bins. Expressed in terms of the regions

relative area, they are: 0-0.05, 0.05-0.1, 0.1-0.15, 0.15-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.6, 0.6-0.8 and 0.8-1.

YAi
denotes the data matrix of regions that are in the area bin Ai with their mean removed. For each

Ai, we have CAi
= YAi

· Y T
Ai

and obtain VAi
and ΛAi

with the principal component analysis of CAi
.

Fig. 7 shows the first 5 eigenregions for all 9 area bins. The overall structure of those eigenregions

is very similar to those obtained over all regions, with the exception of the first eigenregion of X.

Consequently, removing a possible variation of the area also removes the mean-like eigenregion, thereby

indicating that the largest variance of a region structure is in fact the region area. We further verified

this by computing the inner product of VAi
with the first eigenvector of X, and found them to be

almost orthogonal.

As a result, we can conclude that the largest variance of natural image region structure is the region‘s
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area. This result is, of course, dependent on our image data set. However, this does not mean that

using eigenregion features are not usable for image classification of natural images, as is shown in

the next section, but that the inherent variation of natural image structures is principally due to the

regions area.

IV. Eigenregions in Region Classification

We tested the usefulness of eigenregions in an image classification task. The primary goal was to

improve the performance of class specific automatic color correction (ACC) [16]. The considered classes

blue sky, skin tones, and vegetation are critical for the performance of ACC. The classification algorithm

used in this method is a multivariate gaussian analysis based on the maximum a posteriori rule [8],

which was chosen for its robustness and scalability. This is a supervised classification algorithm, which

implies that the class labels have to be defined beforehand.

A set of features is given to the classifier that then retains the relevant ones. If a feature does not

actively help to differentiate two classes, it will not be selected. The “surviving” features therefore

provide the best classification performance (for more details about the classification framework, see [6]).

Besides eigenregions, color and texture features were also calculated for each region. Color features

include mean and standard deviation of R, G, B, L, a, and b. As texture features, we chose 7 of

the Haralick features [9] that are based on a Gray-Level Co-occurrence Matrix (GLCM). Energy,

Contrast, Homogeneity, Inverse Different Moment and Entropy have been defined by Haralick and

two, Cluster Shade and Cluster Prominence, have been added later by Smits [20]. In addition, we also

use the mean amplitude spectrum of the Fourier Transform of a region’s luminance, which represents

a texture intensity measure.

We assessed the discriminative power of eigenregions by classifying regions using only eigenregions

and using eigenregions in conjunction with the other acquired features. In the first case, the input to

the algorithm is the approximation of the regions using the 10 first eigenregions. The classifier then
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TABLE II
Classification success rates (average of correct positive and correct negative rates) using only

eigenregions as features. Detection rates are very good for localized classes (skin, blue sky), but

not for non-localized ones (vegetation). The 2nd column (Success Rate) is obtained using all

eigenregions; the 4th one (Best feature rate) is the maximum rate using a single eigenregion only.

Class Success Rate Best Eigenregion Best feature rate

Skin 0.864 eigen4 (center) 0.817

Vegetation 0.667 eigen2 (top/bottom) 0.58

Blue sky 0.832 eigen2 (top/bottom) 0.805

TABLE III
Regions Classification Rates (average of correct positives and correct negatives rates) with and

without the addition of eigenregions as region features.

Class Rate w/ out eigenregions Rate w. eigenregions

Vegetation 0.924 0.924

Blue Sky 0.89 0.918

Skin 0.905 0.924

determines which of those features are useful for classification, as well as the resulting false positive

and false negative rates. Numerical results are listed in Table II. We found that classification rates

for skin and blue sky regions are better than for vegetation regions. This can be explained by the

fact that vegetation is not a “localized” class. Vegetation can occur anywhere in the image, therefore

rendering geometrical features less meaningful, whereas skin and sky regions will have a tendency to

be located in a specific part of an image (top and center, respectively).

For the second experiment, we used a feature vector composed of the color, texture and geometrical

features [5,6] to which the 10 eigenregion features were added. Table III shows that despite the already

solid results obtained, the use of eigenregions permitted a noticeable improvement of the classification

of sky and skin regions. The results show that even though the reconstruction rate of the eigenregions

is low (see Fig. 5), their potential for discriminating between different classes is still relevant.
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TABLE IV
Images Classification Rates (average of correct positives and correct negatives rates) with image

semantic classes. Region-based classification leads to a better overall image classification.

Class Image Feature Classification Region Feature Classification

Vegetation 0.81 0.89

Blue Sky 0.8 0.91

Skin 0.70 0.85

V. From Region to Image Classification

Let Aν , a semantic region class (”bluesky”, ”vegetation” or ” skin tones”), R a region, Sv a semantic

image class and I the image. If we consider the output of the region classification to be p(Aν |R), then

we have [5, 6]:

p(Sv | I) =
N∑

i=1

area(Ri) · p(Aν | Ri) · Heaviside(p(Aν | Ri)− θ) (12)

Where θ is the chosen threshold of the multivariate gaussian.

The performance of this region-based image classification can be assessed by comparing p(Sv|I) with

the results of a previous classification on the same image set obtained by using image features only

[5, 6]. The results are listed in Table IV.

VI. Conclusion

We have developed a geometrical feature, using Principal Component Analysis, that combines re-

gion area, shape, and position information. Using the eigenregion features in image classification

for automatic color correction resulted in an improved classification for images containing localized

regions.

Based on our data-base of 13’500 real-scene photographs taken by non-professionals, a key result

obtained from eigenregions is that the largest variance in region geometry is due to the area and not
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to the shape or position. This implies that a PCA-based method might not be the most adapted

for region reconstruction purposes, since the variance is more due to randomness than to a defined

structure.

Notwithstanding, using eigenregions in conjunction with color and texture features allows for a

noticeable improvement of image classification rates. Despite a low reconstruction rate and random

structure, eigenregions can still be used in image classification because they are discriminative enough

for a variety of critical image classes.

Eigenregions being database dependent, other results may be obtained. It is possible that for

image databases containing more structured scenes, eigenregions may perform even better than in our

example.
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