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ABSTRACT the CFA design as a spatial-domain optimization problem,

Digital camera sensors are inherently sensitive to the-neand present an efficient iterative procedure that finds (igca
infrared (NIR) part of the light spectrum. In this paper, weoptimal solutions. Numerical experiments demonstratdehe
propose a general design for color filter arrays that allogv th Sibility and effectiveness of the proposed design.

joint capture of visible/NIR images using a single sensoe W
pose the CFA design as a novel spatial domain optimization
problem, and provide an efficient iterative procedure thrati
(locally) optimal solutions. Numerical experiments comfithe
effectiveness of the proposed CFA design, which can simulte2-1. Color Filter Arrays
neously capture high quality visible and NIR image pairs.

2. BACKGROUND

A camera sensor is, in essence, monochromatic. In order to
Index Terms— Color filter arrays, color acquisition, sam- acquire color information, the preferred solution is togela

pling, near-infrared, digital photography CFA in front of the sensor. This array is composed of a mosaic
of colored transparent material that allows only a portibthe
1. INTRODUCTION spectrum to pass through.

In general, a CFA can be represented by a triplet
Silicon-based camera sensors are inherently sensitivbeto t
near-infrared (NIR) band of the light spectrum. Most camera cfajn] = [c,[n], cy[n], cb[n]]T e 0,1,
designs place an NIR-blocking filter, usually named “hot-mir

ror”, in front of the sensor to prevent the NIR contaminationyhere the three components denote the relative percenéges
of the visible image. By filtering out such a large part of thethe R, G, and B information retained at pixel locatien Note
spectrum (700 nm—1100 nm), however, a significant amount Ghat we enforce the range of CFA values to be witfiinl] to
potentially valuable information is lost. ensure physical realizability (via subtractive color les)e Let
The usefulness of the NIR band has long been recognizedy,] ;n] andb[n] denote the ground truth R, G, B values of the
in fields such as spectroscopy [1] and remote sensing [2}. Pr@cene (i.e., the ones we would obtain from a 3-CCD camera);

viding complementary information to the visible data, th&®N  the sensor reading after the CFA can then be modeled as
band has also shown great potential in vision and digital pho

tography applications. For example, recent work [3]-[63 ha
demonstrated that the joint processing of visible and NI da
results in image enhancement and analysis capabilitiesroky
what can be achieved using visible information only. 2.2. Near-Infrared Acquisition
The major limitation of research and applications of joint
visible/NIR image processing is the current acquisitiontnd: ~ We propose a camera design for the simultaneous capture of
One simple way is to capture the visible and NIR images of théigh quality visible/NIR images, which requires no modifica
same scene sequentially, a manner that is both cumbersae dion of the current imaging sensors. In fact, standardaitic
artifact-prone (due to camera and/or scene movement betwebased sensors, both CCD and CMOS, are intrinsically seasiti
consecutive shots). An alternative is to use a two-camgr@+i  t0 wavelengths from roughly 200 nm to 1100 nm. Thus, if one
gether with a beam-splitter [3], an accurate but fairly exgpee ~ removes the hot mirror from the camera, the sensors will have
setup suitable only for certain professional applications the capability of imaging both the visible and NIR bands.
Motivated by the above issue, we are currently investigatin -~ One component of the camera that does need modification
a camera design that camultaneouslycapture high-quality is the CFA. Without the hot mirror, the CFA filters are partly
visible/NIR image pairs with a&ingle sensor. The focus of transparent not only to their respective color wavelengbis
the present paper is to address one critical component of suto NIR as well [4]. This fact makes the acquisition model ih (1
a camera—the color filter array (CFA)—in detail. We poseno longer applicable.

is[n] = c[n]r[n] + cg[n] g[n] + co[n]bln]. (1)



rln] —= 3. THE PROPOSED CFA DESIGN METHOD

CFA is[n] . . S
gln] ——= H@%y[n} The choice of CFA patterns has a greatimpact on the final image
A quality in the digital imaging pipeline. The recent work o H
bln] —— rakawa and Wolfe [7] proposes to design the CFA in the Fourier
NIR f[n] domain. The key idea behind this Fourier approach is that one

should design the CFA to minimize the frequency-domairsalia
Fig. 1. The block diagram for the visible/NIR acquisition pro- ing between the luminance and chrominance channels [8].
cess in the proposed camera design. By doing so, aliasing is treated as noise, and hence should
be avoided at all cost. However, rather than a total lossfof-in
mation, aliasing merely representirear mixing of frequency
values, which can be subsequently decoupled by carefully de
signed reconstruction algorithms. In what follows, we e
a novel spatial domain approach to CFA design, which allows
the existence of frequency aliasing.

3.1. Linear Minimum Mean Square Error Demosaicking

Fig. 2. A generic example of 2 x 2 periodic CFA. ) ] ) o )
We start our discussion with the demosaicking algorithrm-Co

Assume that all color filters in the CFA are equally transmis-sider a generiéV x N periodic CFA. Surrounding eadii x N
sive to the NIR spectrurhConsequently, the color/NIR acqui- block is a local neighborhood of pixels of si¢eL + 1)N x

sition process in the proposed camera design can be refgdsen(2L, + 1) N, whereL specifies the neighborhood size. See Fig-
by the scheme shown in Figure 1. The three visible channelgye 2 for an example, whe§ = 2 andL = 1.

r[n], g[n] andb[n], are combined by the CFA into asingle mo-  pengte byy %' vec(y[n]) the sensor observation vector,
saicked imag@yis[n|. However, since the hot mirror of the cam- wherevec(-) denotes the vectorization of a matrix by stacking
erais removed, all color filters are sensitive to the NIR 8¢ s columns. Similarly, we can define the ground truth vector
as well. The actual sensor reading] therefore is a summa-

def
tion of y,is[n] and an NIR intensity image, denoted pjn]. It = [vee(r[n])”, vec(gln])”, veo(bln])" vee(f[n]) "] The
follows fvrlf)m (1) that ’ proposed visible/NIR image acquisition model in (2) camthe

be written as a compact matrix-vector multiplication

y[n] = cr[n]r[n] + ¢g[n] g[n] + co[n]b[n] + fln].  (2) y— A
The goal of the present work is to design a CFA and the g, . . .
associated demosaicking algorithm that can reconstroamt) f = [diag(c[n]) diag(cg[n]) diag(aln]) I]z, (4)

y[n], full-resolution estimates of the visible and NIR informa- wherediag(-) denotes a diagonal matrix constructed from its

tion (i.e., a 4-Iayer_RGB+NIR image). L ) argument, and is an identity matrix. We refer to the matria
Before presenting the proposed new design in Section 3, We 1« above as tHeFA sampling matrix

first explain why existing CFA patterns in the literature gah Letz, € R4N? pe the vector formed by the RGB and NIR

handle the smultgneous_ acqu[smon of the visible/NIR ges pixel values at the cente¥ x NV block (e.g., the region inside the
To that end, consider a simple image black rectangle in Figure 2). We can easily verify that thisre

rin] = g[n] = bjn] = ¢; and f[n] = cs, a constant “selection” matri$ (consisting of zeroes and ones)

o such thateg = Sx.
wherec; andc, are two constants. In the visible spectrum,  The goal of demosaicking is to obtain an estimatergf
the above image represents a uniform gray patch. A commayom the observation vectgy. In this paper, we focus on linear
feature of most existing CFA patterns is that demosaicking algorithms, and hence the estimation prazess
be represented b
¢r[n] + coln] + epfn] = 7, 3) P y

i.e., the summation of the R, G, B values (sometimes called th Zo=Dy= DAz, ()

luminance gain”) of the CFA is a constant. For example, th%\/hereﬁo is the estimated vector ad is a fixed demosaicking

widely used Bayer CFA satisfies this condition with= 1. o4y "The average performance of a particular demosaicki

Oth_er examples_include the CMY CFA & 2), as well as the matrix D can be measured by the mean square error of recon-
various new designs proposed in [7]. From (2), the sensaol redgir ction. defined as

ing in this case can be written gin] = v ¢1 + ¢o. We see that

ist di inati . def ~
there exist different combinations of andc; that can gener MSE £'E (|l@o — Zo||?) =E(|[Sz — DAz|?), (6)
ate identicaly[n]. Consequently, it is impossible to recover the
original images by using CFAs satisfying (3). where E-) denotes the expectation operator.
def . . .
Ipigments with this property do exist, and are used, for exaip the Let C = E(zz”) be the data correlation matrix. Since

printing of banknotes. C is positive semidefinite, we can always factorize itGas=



PP, where the “square roof is another positive semidefinite fixing D and searching for the beat The key observation is

matrix. The MSE defined in (6) can be rewritten as [9] that we can rewrited () as a linear combination
MSE= |SP — DAP|, 7 3N?
Ala) = Ap + Z ap Ay, (13)
where||-||r is the Frobenius norm of a matrix. k=1

The optimal linear demosaicking scheme in the minimum

; ; here {Ax},_,, sn2 are constant matrices whose entries
mean square error (MMSE) .sense is thus the solution to the fo(Y:Van be determined by (4). Substituting (13) info (12), we get
lowing optimization problem: [10]

3N2
D" = arg min||SP — DAP|i. ®) (D)= argmin||SP - DAP - 3" (ax DALP)|2
aeB 1
A closed-form solution to (8) is (14)
This is a quadratic programming problem with inequality con
D* = SP(AP)', (9)  straints (sincex € B). It can be efficiently solved by methods
such as the interior point algorithm. We can now summarige th
wheref denotes the pseudo-inverse of a matrix. proposed iterative search procedure as follows.

Procedure 1 (Iterative Search for Optimal CFAs) Start from

3.2. A Spatial Domain Approach to Optimal CFA Design an initial guess of the CFA (i.e., a vectare B).

For an]_V. x N periodic CFA, its color pattern within one period 1. Initialize: i — 1 ande® — 0.
is specified by N2 numbers

2. ComputeD = SP(A(a)P)'.

{er[n], cy[n],co[n] : m € [0, N — 1]2}. (10) _

3. Calculate the MSE”) = |SP — DA(a)P||3.
We denote bya € R3N* the column vector containing all 4
3N? color values in (10). As stated before, we only consider
a e [0,1PN ' B to ensure physical realizability. Note that . .
the CFA sampling matrix defined in (4) can now be written as 5. If [ — e(i"1)| is greater than a given threshold (e.g.,
A(a), i.e., a (matrix-valued) function af. 0 = 0.001), then seti — ¢ + 1 and return to Step 2.

Given the LMMSE demosaicking scheme in (8), we propose  Otherwise, stop the procedure and retuen

that the optimal CFA pattern is the solution to the following

. Solve the constrained quadratic minimization problem
(14) and set the solution te.

)]

double optimization problem 4. NUMERICAL EXPERIMENTS
a* = arg min(min |SP — DA(a)PHE) . (11)  We present numerical experiments in this section to vehigy t
acB b effectiveness of the proposed CFA design. To obtain the test

eimages, we modified a Canon 300D camera by replacing its hot
thirror with a piece of clear glass. This modification allowe t
camera to captures visible and NIR light at the same time. We
use lens-mounted filters to capture the visible and NIR irmage
of the same scene in two consecutive shots. Image registrati
has been applied to the visible/NIR pair to compensate fer th
relative camera movement between the two shots. To furgher r
duce the artifacts due to remaining registration errorsahdr
in-camera processing, we downsample the original images fr
2000 x 3000 pixels to512 x 768 pixels.

In our experiments, we use a total of 12 visible/NIR image
pairs, of which six are used as the training set for estingatie
data correlation matri. In what follows, we present the re-
sults for one set of parameters: = 4 (i.e.,4 x 4 CFA patterns)
andL =1 (i.e., a neighborhood size @2 x 12). The selection

* aEy . 2 process of these parameters is omitted due to space liomigati
(a*,D") = irggfn];n |SP — DA(a)P||g. (12) Figure 3(a) shows the convergence behavior of the alternat-
ing minimization algorithm proposed in Procedure 1, with a
See [11] for a justification of the equivalence of (11) and)(12 randomly generated starting point. The MSE values decrease

For fixed «, the above problem is convex, and the corre-monotonically throughout the iteration process, and the@en

sponding optimal solutio®*(«) is given by (9). Now consider procedure converges within a small toleranéSE < 0.001)

There exist close analogies between the above task andakev
classical problems in communication and learning theotiies
particular, it is helpful to interpret the CFA sampling matA

in (11) as a low-dimensional approximation operation aod, ¢
respondingly, demosaickingp as the best reconstruction op-
eration. Finding the optimal CFA is thus equivalent to firglin
the optimal approximation scheme for the original signatbw
minimum information loss.

A closed-form solution of (11) does not seem to exist in gen
eral. Instead, we employ and extend the alternating mir@miz
tion algorithm proposed in [9], which can find (locally) aptl
solutions. To start, we first rewrite the “sequential” opation
problem in (11) into the following “simultaneous” optimizan
scheme
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Fig. 3. (a) The convergence of the proposed iterative procedure
(b) The obtained x 4 CFA design with 15 visible/NIR filters and
one NIR-only filter (i.e., the black pixel on the first row).

after aboutl 650 iterations. To improve the chance of reaching
the global minimum, we repeat the iterative procedure 2@$im |,
with different randomly generated initial values. The dhéal

4 x 4 CFA with the smallest MSE is shown in Figure 3(b).

The average reconstruction MSE for the six test image pair
(not the training set) aré7.4 and 16.4, for visible and NIR,
respectively. Note that if we only acquire the visible péng
same set of images will lead to an average MSH2f (us-
ing the visible-only CFA in [9]). Effectively, we trade st
resolution for additional spectral information. Considgrthe
potential applications of capturing the NIR alongside tige v
ible images, and the fact that current sensor resolutioms ha
increased beyond the human visual system’s discriminaténg
pabilities, this is a trade we can easily afford.

Figure 4 displays the comparison between two pairs of origFig. 4. Left column: two pairs of original RGB/NIR images.
inal RGB/NIR images and the demosaicked results. We obsenRight column: the corresponding demosaicked images usig t
that, in both the visible and the NIR channels, all key visnal proposed CFA and the linear demosaicking schen{8)in
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5. CONCLUSIONS detection using near-infrared,” Proc. SPIE Electronic Imaging,
Digital Photography V2009.

We proposed in this paper a general method for designing CFA46] L. Schaul, C. Fredembach, and S. Susstrunk, “Color enaes
that can simultaneously capture visible and NIR imagesiken! hazing using the near-infrared,” Froc. IEEE Int. Conf. on Im-
previous work on CFA design which approaches the problem in age Proc, Cairo, Egypt, 2009.

the Fourier domain, we pose the CFA design as a novel spatial’l K- Hirakawa and P. J. Wolfe, “Spatio-Spectral color fileeray
domain optimization problem. We provide an efficient itamt design for optimal image recoveryEEE Trans. Image Process.
procedure to search for CFAs that are (locally) optimal solu vol. 17, no. 10, pp'__1876_1890’ Oct. ?008' ) o
tions. Numerical experiments confirm the effectivenessef t [8] D- Alleysson, S. Stsstrunk, and J. Heraut, “Linear deaicing
proposed CFA design, which can faithfully retain the infarm inspired by the human visual systemEEE Trans. Image Pro-

tion of the original visible and NIR images. cess, vol. 14, no. 4, pp. 439_449,‘ Apr. 2005: )
. M. Lu and M. Vetterli, ptimal color filter array desig
[9]1 Y. M. L d M. Vetterli, “Optimal color filt d

Quantitative conditions and an efficient search proceture,

6. REFERENCES Proc. SPIE Electronic Imaging, Digital Photography 2009.
] 10] B. Chaix de Lavarene, D. Alleysson, and J. Héraut, atfical
[1] D. A. Burns and E. W. Ciurczak,Handbook of Near-Infrared implementation of LMMSE demosaicing using luminance and
Analysis CRC Press, 2nd edition, 2001. chrominance spacesComputer Vision and Image Understand-
[2] T. M. Lillesand and R. W. Kiefer, Remote Sensing and Image ing, vol. 107, no. 1-2, pp. 3-13, 2007.
Interpretation Wiley, 4th edition, 1999. [11] G. H. Golub and V. Pereyra, “The differentiation of pdeu

inverses and nonlinear least squares problems whose begriab
separate,” SIAM J. Numer. Anal.vol. 10, no. 2, pp. 413-432,
Apr. 1973.

[3] X.-P. Zhang, T. Sim, and X.-P. Miao, “Enhancing photqura
with near infrared images,” iRroc. IEEE Int. Conf. on Computer
Vision and Pattern Recognitiplnkorage, US, 2008.



