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ABSTRACT

Digital camera sensors are inherently sensitive to the near-
infrared (NIR) part of the light spectrum. In this paper, we
propose a general design for color filter arrays that allow the
joint capture of visible/NIR images using a single sensor. We
pose the CFA design as a novel spatial domain optimization
problem, and provide an efficient iterative procedure that finds
(locally) optimal solutions. Numerical experiments confirm the
effectiveness of the proposed CFA design, which can simulta-
neously capture high quality visible and NIR image pairs.

Index Terms— Color filter arrays, color acquisition, sam-
pling, near-infrared, digital photography

1. INTRODUCTION

Silicon-based camera sensors are inherently sensitive to the
near-infrared (NIR) band of the light spectrum. Most camera
designs place an NIR-blocking filter, usually named “hot mir-
ror”, in front of the sensor to prevent the NIR contamination
of the visible image. By filtering out such a large part of the
spectrum (700 nm–1100 nm), however, a significant amount of
potentially valuable information is lost.

The usefulness of the NIR band has long been recognized
in fields such as spectroscopy [1] and remote sensing [2]. Pro-
viding complementary information to the visible data, the NIR
band has also shown great potential in vision and digital pho-
tography applications. For example, recent work [3]–[6] has
demonstrated that the joint processing of visible and NIR data
results in image enhancement and analysis capabilities beyond
what can be achieved using visible information only.

The major limitation of research and applications of joint
visible/NIR image processing is the current acquisition method:
One simple way is to capture the visible and NIR images of the
same scene sequentially, a manner that is both cumbersome and
artifact-prone (due to camera and/or scene movement between
consecutive shots). An alternative is to use a two-camera rig to-
gether with a beam-splitter [3], an accurate but fairly expensive
setup suitable only for certain professional applications.

Motivated by the above issue, we are currently investigating
a camera design that cansimultaneouslycapture high-quality
visible/NIR image pairs with asingle sensor. The focus of
the present paper is to address one critical component of such
a camera—the color filter array (CFA)—in detail. We pose

the CFA design as a spatial-domain optimization problem,
and present an efficient iterative procedure that finds (locally)
optimal solutions. Numerical experiments demonstrate thefea-
sibility and effectiveness of the proposed design.

2. BACKGROUND

2.1. Color Filter Arrays

A camera sensor is, in essence, monochromatic. In order to
acquire color information, the preferred solution is to place a
CFA in front of the sensor. This array is composed of a mosaic
of colored transparent material that allows only a portion of the
spectrum to pass through.

In general, a CFA can be represented by a triplet

cfa[n] = [cr[n], cg[n], cb[n]]
T
∈ [0, 1]3,

where the three components denote the relative percentagesof
the R, G, and B information retained at pixel locationn. Note
that we enforce the range of CFA values to be within[0, 1] to
ensure physical realizability (via subtractive color layers). Let
r[n], g[n] andb[n] denote the ground truth R, G, B values of the
scene (i.e., the ones we would obtain from a 3-CCD camera);
the sensor reading after the CFA can then be modeled as

yvis[n] = cr[n] r[n] + cg[n] g[n] + cb[n] b[n]. (1)

2.2. Near-Infrared Acquisition

We propose a camera design for the simultaneous capture of
high quality visible/NIR images, which requires no modifica-
tion of the current imaging sensors. In fact, standard silicon-
based sensors, both CCD and CMOS, are intrinsically sensitive
to wavelengths from roughly 200 nm to 1100 nm. Thus, if one
removes the hot mirror from the camera, the sensors will have
the capability of imaging both the visible and NIR bands.

One component of the camera that does need modification
is the CFA. Without the hot mirror, the CFA filters are partly
transparent not only to their respective color wavelengths, but
to NIR as well [4]. This fact makes the acquisition model in (1)
no longer applicable.
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Fig. 1. The block diagram for the visible/NIR acquisition pro-
cess in the proposed camera design.

Fig. 2. A generic example of a2× 2 periodic CFA.

Assume that all color filters in the CFA are equally transmis-
sive to the NIR spectrum.1 Consequently, the color/NIR acqui-
sition process in the proposed camera design can be represented
by the scheme shown in Figure 1. The three visible channels,
r[n], g[n] andb[n], are combined by the CFA into a single mo-
saicked imageyvis[n]. However, since the hot mirror of the cam-
era is removed, all color filters are sensitive to the NIR spectrum
as well. The actual sensor readingy[n] therefore is a summa-
tion of yvis[n] and an NIR intensity image, denoted byf [n]. It
follows from (1) that

y[n] = cr[n] r[n] + cg[n] g[n] + cb[n] b[n] + f [n]. (2)

The goal of the present work is to design a CFA and the
associated demosaicking algorithm that can reconstruct, from
y[n], full-resolution estimates of the visible and NIR informa-
tion (i.e., a 4-layer RGB+NIR image).

Before presenting the proposed new design in Section 3, we
first explain why existing CFA patterns in the literature cannot
handle the simultaneous acquisition of the visible/NIR images.
To that end, consider a simple image

r[n] = g[n] = b[n] = c1 and f [n] = c2,

wherec1 and c2 are two constants. In the visible spectrum,
the above image represents a uniform gray patch. A common
feature of most existing CFA patterns is that

cr[n] + cg[n] + cb[n] ≡ γ, (3)

i.e., the summation of the R, G, B values (sometimes called the
“luminance gain”) of the CFA is a constant. For example, the
widely used Bayer CFA satisfies this condition withγ = 1.
Other examples include the CMY CFA (γ = 2), as well as the
various new designs proposed in [7]. From (2), the sensor read-
ing in this case can be written asy[n] = γ c1 + c2. We see that
there exist different combinations ofc1 andc2 that can gener-
ate identicaly[n]. Consequently, it is impossible to recover the
original images by using CFAs satisfying (3).

1Pigments with this property do exist, and are used, for example, in the
printing of banknotes.

3. THE PROPOSED CFA DESIGN METHOD

The choice of CFA patterns has a great impact on the final image
quality in the digital imaging pipeline. The recent work of Hi-
rakawa and Wolfe [7] proposes to design the CFA in the Fourier
domain. The key idea behind this Fourier approach is that one
should design the CFA to minimize the frequency-domain alias-
ing between the luminance and chrominance channels [8].

By doing so, aliasing is treated as noise, and hence should
be avoided at all cost. However, rather than a total loss of infor-
mation, aliasing merely represents alinear mixing of frequency
values, which can be subsequently decoupled by carefully de-
signed reconstruction algorithms. In what follows, we propose
a novel spatial domain approach to CFA design, which allows
the existence of frequency aliasing.

3.1. Linear Minimum Mean Square Error Demosaicking

We start our discussion with the demosaicking algorithm. Con-
sider a genericN ×N periodic CFA. Surrounding eachN ×N

block is a local neighborhood of pixels of size(2L + 1)N ×
(2L + 1)N , whereL specifies the neighborhood size. See Fig-
ure 2 for an example, whereN = 2 andL = 1.

Denote byy
def
= vec(y[n]) the sensor observation vector,

wherevec(·) denotes the vectorization of a matrix by stacking
its columns. Similarly, we can define the ground truth vector

x
def
= [vec(r[n])T , vec(g[n])T , vec(b[n])T , vec(f [n])T ]T . The

proposed visible/NIR image acquisition model in (2) can then
be written as a compact matrix-vector multiplication

y = Ax

def
=

[
diag(cr[n]) diag(cg[n]) diag(cb[n]) I

]
x, (4)

wherediag(·) denotes a diagonal matrix constructed from its
argument, andI is an identity matrix. We refer to the matrixA
defined above as theCFA sampling matrix.

Let x0 ∈ R
4N2

be the vector formed by the RGB and NIR
pixel values at the centerN×N block (e.g., the region inside the
black rectangle in Figure 2). We can easily verify that thereis
a constant “selection” matrixS (consisting of zeroes and ones)
such thatx0 = Sx.

The goal of demosaicking is to obtain an estimate ofx0

from the observation vectory. In this paper, we focus on linear
demosaicking algorithms, and hence the estimation processcan
be represented by

x̂0 = D y = DAx, (5)

wherex̂0 is the estimated vector andD is a fixed demosaicking
matrix. The average performance of a particular demosaicking
matrix D can be measured by the mean square error of recon-
struction, defined as

MSE
def
= E

(
‖x0 − x̂0‖

2
)

= E
(
‖S x−DAx‖2

)
, (6)

where E(·) denotes the expectation operator.

Let C
def
= E(xxT ) be the data correlation matrix. Since

C is positive semidefinite, we can always factorize it asC =



PP , where the “square root”P is another positive semidefinite
matrix. The MSE defined in (6) can be rewritten as [9]

MSE = ‖SP −DAP ‖2F, (7)

where‖·‖F is the Frobenius norm of a matrix.
The optimal linear demosaicking scheme in the minimum

mean square error (MMSE) sense is thus the solution to the fol-
lowing optimization problem: [10]

D∗ = arg min
D

‖SP −DAP ‖2F. (8)

A closed-form solution to (8) is

D∗ = SP (AP )†, (9)

where† denotes the pseudo-inverse of a matrix.

3.2. A Spatial Domain Approach to Optimal CFA Design

For anN ×N periodic CFA, its color pattern within one period
is specified by3N2 numbers

{
cr[n], cg[n], cb[n] : n ∈ [0, N − 1]2

}
. (10)

We denote byα ∈ R
3N2

the column vector containing all
3N2 color values in (10). As stated before, we only consider

α ∈ [0, 1]3N2 def
= B to ensure physical realizability. Note that

the CFA sampling matrix defined in (4) can now be written as
A(α), i.e., a (matrix-valued) function ofα.

Given the LMMSE demosaicking scheme in (8), we propose
that the optimal CFA pattern is the solution to the following
double optimization problem

α∗ = arg min
α∈B

(
min
D

‖SP −DA(α)P ‖2F

)
. (11)

There exist close analogies between the above task and several
classical problems in communication and learning theories. In
particular, it is helpful to interpret the CFA sampling matrix A

in (11) as a low-dimensional approximation operation and, cor-
respondingly, demosaickingD as the best reconstruction op-
eration. Finding the optimal CFA is thus equivalent to finding
the optimal approximation scheme for the original signals with
minimum information loss.

A closed-form solution of (11) does not seem to exist in gen-
eral. Instead, we employ and extend the alternating minimiza-
tion algorithm proposed in [9], which can find (locally) optimal
solutions. To start, we first rewrite the “sequential” optimization
problem in (11) into the following “simultaneous” optimization
scheme

(α∗, D∗) = arg min
α∈B, D

‖SP −DA(α)P ‖2F. (12)

See [11] for a justification of the equivalence of (11) and (12).
For fixedα, the above problem is convex, and the corre-

sponding optimal solutionD∗(α) is given by (9). Now consider

fixing D and searching for the bestα. The key observation is
that we can rewriteA(α) as a linear combination

A(α) = A0 +

3N2∑

k=1

αkAk, (13)

where{Ak}k=0,1,...,3N2 are constant matrices whose entries
can be determined by (4). Substituting (13) into (12), we get

α∗(D) = arg min
α∈B

‖SP −DA0P −

3N2∑

k=1

(αk DAkP )‖2F.

(14)
This is a quadratic programming problem with inequality con-
straints (sinceα ∈ B). It can be efficiently solved by methods
such as the interior point algorithm. We can now summarize the
proposed iterative search procedure as follows.

Procedure 1 (Iterative Search for Optimal CFAs) Start from
an initial guess of the CFA (i.e., a vectorα ∈ B).

1. Initialize: i = 1 ande(0) = 0.

2. ComputeD = SP (A(α)P )†.

3. Calculate the MSEe(i) = ‖SP −DA(α)P ‖2F.

4. Solve the constrained quadratic minimization problem
(14)and set the solution toα.

5. If |e(i) − e(i−1)| is greater than a given threshold (e.g.,
δ = 0.001), then seti ← i + 1 and return to Step 2.
Otherwise, stop the procedure and returnα.

4. NUMERICAL EXPERIMENTS

We present numerical experiments in this section to verify the
effectiveness of the proposed CFA design. To obtain the test
images, we modified a Canon 300D camera by replacing its hot
mirror with a piece of clear glass. This modification allows the
camera to captures visible and NIR light at the same time. We
use lens-mounted filters to capture the visible and NIR images
of the same scene in two consecutive shots. Image registration
has been applied to the visible/NIR pair to compensate for the
relative camera movement between the two shots. To further re-
duce the artifacts due to remaining registration errors andother
in-camera processing, we downsample the original images from
2000× 3000 pixels to512× 768 pixels.

In our experiments, we use a total of 12 visible/NIR image
pairs, of which six are used as the training set for estimating the
data correlation matrixC. In what follows, we present the re-
sults for one set of parameters:N = 4 (i.e.,4×4 CFA patterns)
andL = 1 (i.e., a neighborhood size of12× 12). The selection
process of these parameters is omitted due to space limitations.

Figure 3(a) shows the convergence behavior of the alternat-
ing minimization algorithm proposed in Procedure 1, with a
randomly generated starting point. The MSE values decrease
monotonically throughout the iteration process, and the entire
procedure converges within a small tolerance (△MSE < 0.001)
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Fig. 3. (a) The convergence of the proposed iterative procedure.
(b) The obtained4×4 CFA design with 15 visible/NIR filters and
one NIR-only filter (i.e., the black pixel on the first row).

after about1650 iterations. To improve the chance of reaching
the global minimum, we repeat the iterative procedure 20 times,
with different randomly generated initial values. The obtained
4× 4 CFA with the smallest MSE is shown in Figure 3(b).

The average reconstruction MSE for the six test image pairs
(not the training set) are17.4 and 16.4, for visible and NIR,
respectively. Note that if we only acquire the visible part,the
same set of images will lead to an average MSE of12.1 (us-
ing the visible-only CFA in [9]). Effectively, we trade spatial
resolution for additional spectral information. Considering the
potential applications of capturing the NIR alongside the vis-
ible images, and the fact that current sensor resolutions have
increased beyond the human visual system’s discriminatingca-
pabilities, this is a trade we can easily afford.

Figure 4 displays the comparison between two pairs of orig-
inal RGB/NIR images and the demosaicked results. We observe
that, in both the visible and the NIR channels, all key visualin-
formation of the original images have been faithfully retained,
demonstrating the feasibility of acquiring high quality visible
and NIR images simultaneously using a single sensor.

5. CONCLUSIONS

We proposed in this paper a general method for designing CFAs
that can simultaneously capture visible and NIR images. Unlike
previous work on CFA design which approaches the problem in
the Fourier domain, we pose the CFA design as a novel spatial
domain optimization problem. We provide an efficient iterative
procedure to search for CFAs that are (locally) optimal solu-
tions. Numerical experiments confirm the effectiveness of the
proposed CFA design, which can faithfully retain the informa-
tion of the original visible and NIR images.
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[5] C. Fredembach and S. Süsstrunk, “Illumination estimation and
detection using near-infrared,” inProc. SPIE Electronic Imaging,
Digital Photography V, 2009.

[6] L. Schaul, C. Fredembach, and S. Süsstrunk, “Color image de-
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