Learning to Mean-Shift in O(1) for Bayesian Image Restoration

1

Siavash Bigdeli Images and Visual Representation Lab (IVRL)

Meiguang Jin, Paolo Favaro Matthias Zwicker

Image restoration

• Restore degraded images by removing blur, noise, holes, etc.

Image restoration

• Restore degraded images by removing blur, noise, holes, etc.

Challenges

• Degradation leads to loss of information

Many possible sharp images

Degradation

Observed image

Challenges

- Degradation leads to loss of information
- Restoration is ill-posed

Many possible sharp images

Degradation

Observed image

$$\operatorname*{argmax}_{x} p(x|y) = \operatorname*{argmax}_{x} p(y|x) p(x)$$

$$\operatorname{argmax}_{x} p(x|y) = \operatorname{argmax}_{x} p(y|x) p(x)$$
$$= \operatorname{argmax}_{x} \log p(y|x) + \log p(x)$$

$$\operatorname{argmax}_{x} p(x|y) = \operatorname{argmax}_{x} p(y|x) p(x)$$
$$= \operatorname{argmax}_{x} \log p(y|x) + \log p(x)$$

- $\log p(y|x)$: data term (likelihood)
 - How well does the solution explain the observed data

$$\operatorname{argmax}_{x} p(x|y) = \operatorname{argmax}_{x} p(y|x) p(x)$$
$$= \operatorname{argmax}_{x} \log p(y|x) + \log p(x)$$

- $\log p(y|x)$: data term (likelihood)
 - How well does the solution explain the observed data
- $\log p(x)$: image prior
 - Probability of the solution

• Characteristics

Method	Domain	Feature	Prior	Prior Parametrization	
TV	internal	gradient	Sparsity	L_2 -norm	generic
NLM	internal	patch	MRFs	Gaussian	$\operatorname{generic}$
BM3D	internal	patch blocks	Sparsity	DCTs	generic
FoE	$\operatorname{external}$	patch	MRFs	t-distribution	generic
KSVD	external	patch	Sparsity	Dictionaries	generic
EPLL	external	patch	True density	GMMs	$\operatorname{generic}$
VDSR	external	image^*	True density	CNNs	upsampling
DnCNN	external	image^*	True density	CNNs	denoising
DJDD	$\operatorname{external}$	image^*	True density	CNNs	demosaicing
GradNet	$\operatorname{external}$	image^*	Kernel density	Gumbel, CNNs	deblurring
IRCNN	external	image^*	True density	Cascade of CNNs	generic
Our method	external	image^*	Kernel density	m CNNs	generic

• External dataset vs. internal image

Method	Domain	Feature	Prior	Parametrization	Application
TV	internal	gradient	Sparsity	L_2 -norm	generic
NLM	internal	patch	MRFs	Gaussian	generic
BM3D	internal	patch blocks	Sparsity	DCTs	generic
FoE	external	patch	MRFs	t-distribution	generic
KSVD	external	patch	Sparsity	Dictionaries	generic
EPLL	external	patch	True density	GMMs	generic
VDSR	external	image^*	True density	CNNs	upsampling
DnCNN	external	image^*	True density	CNNs	denoising
DJDD	external	image^*	True density	CNNs	demosaicing
GradNet	external	image^*	Kernel density	Gumbel, CNNs	deblurring
IRCNN	external	image^*	True density	Cascade of CNNs	generic
Our method	external	$image^*$	Kernel density	m CNNs	generic

• Large images regions vs. small patches

Method	Domain	Feature	Prior	Prior Parametrization	
TV	internal	gradient	Sparsity	L_2 -norm	generic
NLM	internal	patch	MRFs	Gaussian	generic
BM3D	internal	patch blocks	Sparsity	DCTs	generic
FoE	external	patch	MRFs	t-distribution	generic
KSVD	external	patch	Sparsity	Dictionaries	generic
EPLL	external	patch	True density	GMMs	generic
VDSR	external	$image^*$	True density	CNNs	upsampling
DnCNN	external	$image^*$	True density	CNNs	denoising
DJDD	external	$image^*$	True density	CNNs	demosaicing
GradNet	external	$image^*$	Kernel density	Gumbel, CNNs	deblurring
IRCNN	external	$image^*$	True density	Cascade of CNNs	generic
Our method	external	image*	Kernel density	CNNs	generic

• True density vs. sparse representations

Method	Domain	Feature	Prior	Parametrization	Application
TV	internal	gradient	Sparsity	L_2 -norm	generic
NLM	internal	patch	MRFs	Gaussian	generic
BM3D	internal	patch blocks	Sparsity	DCTs	generic
FoE	$\operatorname{external}$	patch	MRFs	t-distribution	generic
KSVD	external	patch	Sparsity	Dictionaries	$\operatorname{generic}$
EPLL	$\operatorname{external}$	patch	True density	GMMs	$\operatorname{generic}$
VDSR	external	image^*	True density	CNNs	upsampling
DnCNN	$\operatorname{external}$	image^*	True density	CNNs	denoising
DJDD	$\operatorname{external}$	image^*	True density	CNNs	demosaicing
GradNet	$\operatorname{external}$	image^*	Kernel density	Gumbel, CNNs	deblurring
IRCNN	external	image^*	True density	Cascade of CNNs	generic
Our method	external	image^*	Kernel density	m CNNs	generic

• Neural vs. GMM approximations

Method	Domain	Feature	Prior	Parametrization	Application
TV	internal	gradient	Sparsity	L_2 -norm	generic
NLM	internal	patch	MRFs	Gaussian	$\operatorname{generic}$
BM3D	internal	patch blocks	Sparsity	DCTs	generic
FoE	$\operatorname{external}$	patch	MRFs	t-distribution	generic
KSVD	external	patch	Sparsity	Dictionaries	generic
EPLL	external	patch	True density	m GMMs	$\operatorname{generic}$
VDSR	external	image^*	True density	CNNs	upsampling
DnCNN	external	image^*	True density	CNNs	denoising
DJDD	$\operatorname{external}$	image^*	True density	CNNs	demosaicing
GradNet	$\operatorname{external}$	image^*	Kernel density	Gumbel, CNNs	deblurring
IRCNN	external	image^*	True density	Cascade of CNNs	generic
Our method	external	image^*	Kernel density	CNNs	generic

• Neural vs. GMM approximations

Method	Domain	Feature	Prior	Parametrization	Application
TV	internal	gradient	Sparsity	L_2 -norm	generic
NLM	internal	patch	MRFs	Gaussian	generic
BM3D	internal	patch blocks	Sparsity	DCTs	generic
FoE	$\operatorname{external}$	patch	MRFs	t-distribution	$\operatorname{generic}$
KSVD	external	patch	Sparsity	Dictionaries	$\operatorname{generic}$
EPLL	external	patch	True density	GMMs	$\operatorname{generic}$
VDSR	external	image^*	True density	CNNs	upsampling
DnCNN	$\operatorname{external}$	image^*	True density	m CNNs	denoising
DJDD	$\operatorname{external}$	image^*	True density	m CNNs	demosaicing
GradNet	$\operatorname{external}$	image^*	Kernel density	Gumbel, CNNs	deblurring
IRCNN	$\operatorname{external}$	image^*	True density	Cascade of CNNs	generic
Our method	external	image^*	Kernel density	m CNNs	generic

• General vs. limited applications

Method	Domain	Feature	Prior	Prior Parametrization	
TV	internal	gradient	Sparsity	L_2 -norm	generic
NLM	internal	patch	MRFs	Gaussian	generic
BM3D	internal	patch blocks	Sparsity	DCTs	generic
FoE	external	patch	MRFs	t-distribution	generic
KSVD	external	patch	Sparsity	Dictionaries	generic
EPLL	external	patch	True density	GMMs	generic
VDSR	external	image^*	True density	CNNs	upsampling
DnCNN	$\operatorname{external}$	image^*	True density	CNNs	denoising
DJDD	$\operatorname{external}$	image^*	True density	CNNs	demosaicing
GradNet	$\operatorname{external}$	image^*	Kernel density	Gumbel, CNNs	deblurring
IRCNN	$\operatorname{external}$	image^*	True density	Cascade of CNNs	generic
Our method	external	image^*	Kernel density	CNNs	generic

• Proposed

Method	Domain	Feature	Prior	Prior Parametrization	
TV	internal	gradient	Sparsity	L_2 -norm	generic
NLM	internal	patch	MRFs	Gaussian	$\operatorname{generic}$
BM3D	internal	patch blocks	Sparsity	DCTs	generic
FoE	external	patch	MRFs	t-distribution	generic
KSVD	external	patch	Sparsity	Dictionaries	generic
EPLL	$\operatorname{external}$	patch	True density	GMMs	$\operatorname{generic}$
VDSR	$\operatorname{external}$	image^*	True density	CNNs	upsampling
DnCNN	external	image^*	True density	CNNs	denoising
DJDD	external	image^*	True density	CNNs	demosaicing
GradNet	external	image^*	Kernel density	Gumbel, CNNs	deblurring
IRCNN	external	image^*	True density	Cascade of CNNs	generic
Our method	external	$image^*$	Kernel density	CNNs	generic

• Visualizing image priors, Shaham and Michaeli, ECCV 2016

Input

FoE

NLM

Image Restoration using Autoencoding Priors

VISAPP 2018

Siavash Arjomand Bigdeli

Matthias Zwicker

Density estimation prior

- Given: large database of images (or image patches)
- Our prior: approx. p(x) using density estimate

Density estimation prior

- Given: large database of images (or image patches)
- Our prior: approx. p(x) using density estimate

Density estimation prior

- Given: large database of images (or image patches)
- Our prior: approx. p(x) using density estimate

- Contribution
 - Learn (gradient of) density estimate using denoising autoencoders
 - Prior is mean-shift magnitude

• DAE r_{σ} minimizes

$$\mathcal{L}_{\text{DAE}} = \mathbb{E}_{\eta, x} \left[|x - r_{\sigma}(x + \eta)|^2 \right]$$

- Images x
- Gaussian noise η , variance σ^2

• DAE r_{σ} minimizes

$$\mathcal{L}_{\text{DAE}} = \mathbb{E}_{\eta, x} \left[|x - r_{\sigma}(x + \eta)|^2 \right]$$

- Images x
- Gaussian noise η , variance σ^2
- DAE $r_{\sigma}(x)$ is local mean around image x

[Alain and Bengio, JMLR 2014] [Levin and Nadler, CVPR 2011]

• DAE r_{σ} minimizes

$$\mathcal{L}_{\text{DAE}} = \mathbb{E}_{\eta, x} \left[|x - r_{\sigma}(x + \eta)|^2 \right]$$

- Images x
- Gaussian noise η , variance σ^2

Prior

- DAE $r_{\sigma}(x)$ is local mean around image x
- Our prior is the mean shift vector [Miyasawa, BIIS 1961] [Raphan and Simoncelli NC 2010] [Bigdeli and Zwicker, arXiv 2017]

$$\nabla \log \int g_{\sigma}(\eta) p(x+\eta) d\eta = \frac{1}{\sigma^2} \left(r_{\sigma}(x) - x \right)$$

Mean shift vector Autoencoding error

• DAE r_{σ} minimizes

$$\mathcal{L}_{\text{DAE}} = \mathbb{E}_{\eta, x} \left[|x - r_{\sigma}(x + \eta)|^2 \right]$$

- Images x
- Gaussian noise η , variance σ^2
- DAE $r_{\sigma}(x)$ is local mean around image x
- Our prior is the mean shift vector

Kernel density estimate
$$\nabla \log \int g_{\sigma}(\eta) p(x+\eta) d\eta = \frac{1}{\sigma^2} \left(r_{\sigma}(x) - x \right)$$
PriorMean shift vector

Autoencoding error

• Simple 2D Spiral distribution

Spiral manifold and observed samples

Smoothed density from observed samples

Mean-shift vectors Learned by DAE

• Simple 2D Spiral distribution

Spiral manifold and observed samples

Smoothed density from observed samples

Mean-shift vectors Learned by DAE

• Simple 2D Spiral distribution

Spiral manifold and observed samples

Smoothed density from observed samples

• Our Prior:
$$|r_{\sigma}(x) - x|^2$$

length of the Mean Shift vector

Mean-shift vectors Learned by DAE

- Parametrized using Neural Networks
 - Learn to mean-shift in O(1)!!

- Parametrized using Neural Networks
 - Learn to mean-shift in O(1)!!
- Gradient steps to minimize our prior error

- Parametrized using Neural Networks
 - Learn to mean-shift in O(1)!!
- Gradient steps to minimize our prior error

Image restoration algorithm

- Gradient descent to find MAP
 - DAE to compute gradient of prior
 - Gradient of data term depending on degradation model, can be computed directly

Image restoration algorithm

Gradient descent to find MAP

Results: non-blind deblurring

• Blurred

Results: non-blind deblurring

• Our restoration

Results: deblurring (PSNR)

Method	2.55	7.65	12.75	time(s)
Levin	31.09	27.40	25.36	3.09
EPLL	32.51	28.42	26.13	16.49
RTF-6	32.51	21.44	16.03	9.82
IRCNN	30.78	28.77	27.41	2.47
DAEP (Ours)	32.69	28.95	26.87	11.19

Learning Deep CNN Denoiser Prior for Image Restoration Zhang et al., CVPR 2017

Results: super-resolution

• 4x down-sampled

Results: super-resolution

• Our restoration

Results: super-resolution (PSNR)

Method	$\times 2$	$\times 3$	$\times 4$	$\times 5$
Bicubic	28.53	25.92	24.44	23.46
SRCNN	30.52	27.48	25.76	24.05
TNRD	30.53	27.60	25.92	24.61
VDSR	30.72	27.81	26.16	24.01
DnCNN-3	30.99	27.93	26.25	24.26
IRCNN	30.79	27.68	25.96	24.73
DAEP (Ours)	31.07	27.93	26.13	24.88

Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising Zhang et al., IEEE TIP 2017

Summary

- Natural image prior based on density estimate
- Generic
 - Deblurring
 - Super-resolution
 - Hole-filling

- State of the art results
- Code:

https://github.com/siavashbigdeli/DAEP

Discussion

- Many recent approaches use denoising to solve generic image restoration problems
- Usually motivated by specific underlying algorithm (ADMM)

Our approach

- First one to make connection between denoising and mean shift
- Insight: optimal Gaussian denoising under L₂ loss equivalent to computing gradient on smoothed data distribution

What's next

- Generic image prior
 - Degradation parameters unknown during training
 - Deblurring, demosaicing, super-resolution, etc.
- Generic restoration
 - Degradation parameters unknown during restoration!
 - Noise-blind, Kernel-blind

Deep Mean-Shift Priors for Image Restoration

NIPS 2017

Siavash Arjoman Bigdeli

Meiguang Jin

Paolo Favaro

Matthias Zwicker

Bayes formulation

>

• Expected utility of solution x

$$E_{\tilde{x}}[G(\tilde{x}, x)] = \int G(\tilde{x}, x) p(y|\tilde{x}) p(\tilde{x}) d\tilde{x}$$
Utility likelihood Prior
Suitable utility, Jensen's inequality
$$\int g_{\sigma}(\epsilon) \log p(y|x+\epsilon) d\epsilon + \log \int g_{\sigma}(\eta) p(x+\eta) dr$$
Data term data(x)
Image likelihood prior(x)

Image restoration algorithm

- Gradient descent to minimize (negative) utility
- Denoising autoencoder (DAE) gives gradient of prior

$$\nabla_x \operatorname{prior}(x) = \nabla \log \int g_\sigma(\eta) p(x+\eta) d\eta = \left(\operatorname{DAE}_\sigma(x) - x \right) / \sigma^2$$

- Gradient of data term can be computed
 - known parameters
 - noise-blind
 - noise- and kernel-blind

 $\nabla_x \operatorname{data}(x)$

$$\nabla_x \operatorname{data}_{\sigma_n^*}(x)$$

 $\nabla_{x,k} \operatorname{data}_{\sigma_n^*}(x)$

Results: super-resolution

• 4x down-sampled

Results: super-resolution

• Our restoration

Results: non-blind deblurring

• Blurred

Results: non-blind deblurring

• Our restoration

Results: deblurring (PSNR)

Non-blind

Method	σ_n :	2.55	5.10	7.65	10.2
EPLL		25.38	23.53	22.54	21.91
DAEP		25.42	23.67	22.78	22.21
IRCNN		25.60	24.24	23.42	22.91
GradNet 7S		25.57	24.23	23.46	22.94
Ours		25.69	24.45	23.60	22.99
Ours + NA		26.00	24.47	23.61	22.97

Results: deblurring (PSNR)

Noise-blind

Method	σ_n :	2.55	5.10	7.65	10.2
EPLL		25.38	23.53	22.54	21.91
DAEP		25.42	23.67	22.78	22.21
IRCNN		25.60	24.24	23.42	22.91
GradNet 7S		25.57	24.23	23.46	22.94
Ours		25.69	24.45	23.60	22.99
Ours + NA		26.00	24.47	23.61	$\underline{22.97}$

Noise-blind image deblurring Jin et al., CVPR 2017

Results: blind deblurring

Summary

- Generic image prior based on (gradient of) density estimate of natural image distribution
 - Deblurring, demosaicing, super-resolution, etc.
- Generic framework
 - Noise- and kernel-blind
- Learned using DAE
- State of the art results
- Code:

https://github.com/siavashbigdeli/DMSP

Limitations

- Prior seems to capture mostly low-level image properties (sharp edges)
 - Receptive field 41x41 pixels
 - Cannot "invent" semantically meaningful image structure (textures)
- Speed far from real-time applications
- Practical issues with DAE overfitting to noisy images
- Degradation *model* still given

Conclusions

- Generic image prior
 - Deblurring, demosaicing, super-resolution, etc.
- Bayes formulation
 - Noise- and Kernel-blind

Future work

- Generative models to "invent" texture [Globally and Locally Consistent Image Completion, Iizuka et al, SIGGRAPH 2017]
- Multiresolution [Koltun ICCV 2017, Kerras ICLR 2018]
- DAEs for depth, NIR, 3D models, etc.