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ABSTRACT
Convolutional Neural Networks (CNNs) have been widely
adopted for many imaging applications. For image aes-
thetics prediction, state-of-the-art algorithms train CNNs on
a recently-published large-scale dataset, AVA. However, the
distribution of the aesthetic scores on this dataset is extremely
unbalanced, which limits the prediction capability of existing
methods. We overcome such limitation by using weighted
CNNs. We train a regression model that improves the pre-
diction accuracy of the aesthetic scores over state-of-the-art
algorithms. In addition, we propose a novel histogram predic-
tion model that not only predicts the aesthetic score, but also
estimates the difficulty of performing aesthetics assessment
for an input image. We further show an image enhancement
application where we obtain an aesthetically pleasing crop of
an input image using our regression model.

Index Terms— Aesthetics, sample weights, CNN

1. INTRODUCTION

Automatically assessing image aesthetics is useful for many
applications. To name a few, aesthetics can be adopted as
one of the ranking criteria for image retrieval systems or one
of the objectives for image enhancement systems. Moreover,
users can manage their images collections based on aesthet-
ics. Hence, various algorithms [1–10] have been proposed in
the recent years to perform image aesthetics assessment.

In this paper, we train convolutional neural networks
(CNNs) for aesthetics assessment. Our model is trained on
the recently-published AVA dataset [6], which contains more
than 250,000 images collected from a digital photography
challenge1. Each image has around 200 user ratings about its
aesthetic quality, with each rating being an integer between 1
and 10 (1 implies the lowest quality and 10 means the highest
quality). We show two sample images and their correspond-
ing histograms of user ratings in Fig. 1. The average of user
ratings is taken as the aesthetic score for each image.

The distribution of the aesthetic scores in the AVA dataset
is extremely unbalanced, as shown in Fig. 2 (a), which intro-
duces bias into all the previous CNN models that are trained
on this dataset [8,10]. To reduce such bias, we propose to use
sample weights during training. The sample weights are first

1http://www.dpchallenge.com/

Fig. 1. (a) and (b) are two images of the AVA dataset, (c) and
(d) are their corresponding histograms of user ratings.

computed according to the occurrences of the aesthetic scores
and later incorporated into a weighted loss function for train-
ing. This loss function is balanced over images with different
aesthetic scores, thus enabling the trained CNNs to work for
images of different aesthetic quality. Using sample weights,
we train a regression model which can achieve a larger pre-
diction range and better accuracy than previous methods.

All previous methods [6, 8–10] directly use the aesthetic
scores for training while discarding the information of user
ratings. As a matter of fact, the distribution of the ratings re-
veals not only the aesthetic score, but also how much users
agree with each other when aesthetically assessing the image.
Therefore, the distribution is an indicator of the difficulty of
performing aesthetics assessment for a given image. Using
difficulty estimation has been shown to give reliable aesthetic
scores for images with user labels [11, 12]. For instance, the
two histograms in Fig. 1 clearly indicate that Fig. 1(a) is
agreed by the majority to be of average quality, thus being
easy to judge, while Fig. 1(b) is less conclusive and more dif-
ficult to assess. To estimate the level of difficulty, we train
a histogram prediction CNN model that can predict the nor-
malized histogram of user ratings. Our experiments show that
this model produces accurate aesthetic scores and reliable es-
timations of user ratings variety.



To summarize, our contributions are: 1) the usage of sam-
ple weights during training, which helps to overcome the bias
in the training set of the AVA dataset and extend the prediction
capability of the trained CNN models; 2) a trained regression
CNN model that achieves a larger prediction range and better
accuracy than the state-of-the-art methods; 3) a trained his-
togram prediction model that reliably estimates the aesthetic
scores as well as the difficulty of aesthetics assessment; 4) an
image enhancement application that outputs an aesthetically
pleasing crop of an input image by using the results of the
trained CNN model.

2. STATE-OF-THE-ART

State-of-the-art aesthetics prediction methods can be char-
acterized into three categories. The first category [1–4, 9]
links aesthetics with handcrafted low-level image features,
e.g., color distribution, edge distribution, hue channel, etc.
Another category [5–7] uses generic image features such as
SIFT [13] or Fisher Vector [14, 15], which have been shown
to outperform the handcrafted low-level features. However,
as aesthetics is a complex, subjective, and high-level concept,
these methods often result in inferior performance.

Since CNNs have demonstrated their effectiveness in
many imaging and computer vision tasks [16–19], the latest
methods [8, 10] adopted CNNs for predicting aesthetics. For
instance, Lu et al. [8] formulate the aesthetics assessment as
a classification problem. They split the AVA dataset into two
classes (high quality and low quality) and train a CNN model
to predict the class labels. Such a classification model can
only predict binary class labels while discarding the differ-
ences within a class. The applications of their model are thus
limited: their model are not suitable for an image retrieval
system or an image enhancement application. Kao et al. [10]
propose a CNN regression model which provides continuous
aesthetic scores. However, they ignore the unbalanced distri-
bution of the aesthetic scores in the AVA dataset, as shown
in Fig. 2(a). Their regression model is thus biased towards
the scores between 4.5 to 6 and has limited prediction range.
Consequently, it is less suitable for real world applications in
which we encounter images of a variety of aesthetic quality.

3. METHODS

In this section we first explain how we derive the sample
weights for the training set, followed by the two CNN models
that we propose to predict aesthetics. We explain the regres-
sion model in Sec. 3.2 and the histogram prediction model in
Sec. 3.3.

3.1. Sample weights

Assume the histogram of the aesthetic scores in the training
set is {bi, i = 1, 2...B}. B is the number of bins that evenly

cover the range of the aesthetic scores. We set B to 90 for
the aesthetic scores’ range of 1 to 10. bi is the occurrence
number of the ith bin, namely the number of images assigned
the aesthetic scores within the ith bin’s range. The sample
weight wi for the ith bin is computed as:

b0i =
biPB
i=1 bi

; wi =
1

b0i
(1)

Images within the same bin share the same sample weights.
The sample weight is inversely proportional to the normalized
occurrence number. Consequently, images with rare scores
are assigned larger sample weights than images with more
frequent scores. Note that sample weights are only computed
for the training set and only used during training, not during
testing.

3.2. Regression model

The architecture of our regression CNN model is the same as
the VGG16 network [19], which has shown superior perfor-
mance on image classification. The last layer of the network
is modified to have only one output neuron for predicting a
single aesthetic score. We remove the last softmax activation
function since the output is only one value.

The training of this model is done by minimizing the fol-
lowing Weighted Mean Squared Error (WMSE) loss function:

WMSE =
1

PN
i=1 wi

NX

i=1

wi · (yi � ŷi)
2 (2)

Here wi is the sample weight computed according to Eqn. 1.
yi is the predicted aesthetic score and ŷi is the groundtruth
aesthetic score. N is the number of images in the training set.

Note that images with large sample weights do not occur
very often, thus the overall contribution to the loss function is
balanced across images with varying aesthetic scores. In this
way, the sample weights help to reduce the bias in the training
set.

3.3. Histogram prediction model

The histogram prediction model aims at predicting the nor-
malized histogram of user ratings for an input image. The
output of the model is a vector with 10 bins as user ratings are
integers between 1 and 10. We adjust the last layer of VGG16
network [19] to have 10 output neurons. The loss function for
training is the Weighted Mean �2 Error (WMCE):

WMCE =
1

PN
i=1 wi

NX

i=1

wi · �2(hi, ĥi) (3)

where wi is the sample weight for image i. hi is the output
histogram from the network and ĥi is the groundtruth normal-
ized histogram. �2 represents the chi-square distance.



Fig. 2. The distribution of the average aesthetic scores for (a)
the whole AVA dataset (b) the training set, (c) the RS-test, (d)
the ED-test, which has an equal number of images from three
categories: low, average, and high quality.

Based on the output histogram, two values are derived:
the aesthetic score, which is the average of user ratings, and
the standard deviation (std) of user ratings. This std value
represents the difficulty of aesthetics assessment. A small std
means consensus and simplicity of aesthetics assessment as
user ratings concentrate around the average score, while a
large std represents difficulty. By comparing the std values,
we can evaluate whether one image is more difficult to aes-
thetically assess than another. For example, Fig. 1(c) has the
std value of 0.8775 and Fig. 1(d) is 2.3228. The image in Fig.
1(b) is clearly more difficult to assess.

4. EXPERIMENTS

4.1. Training and test sets

We split the AVA dataset into three parts: training set, test set
1 (RS-test) and test set 2 (ED-test). The distributions of the
aesthetic scores in these three sets are shown in Fig. 2(b)-
(d). RS-test contains 3000 Random Sampled images, which
is similar to the test set in [10] that contains 5000 random
sampled images. ED-test is built to have 3000 images Evenly
Distributed among three categories: the low quality images
(aesthetic score < 4), the average quality images (4  aes-
thetic score  7) and the high quality images (aesthetic score
> 7), as shown in Fig. 2 (d). The other 249530 images of the
AVA dataset are used for the training set.

4.2. Processing

Since many aspects of the images can affect the aesthetics,
such as composition and saturation, it is not recommended
to apply data augmentation methods. We directly resize the
whole image to 224⇥224, which is then fed into the network.
Although this operation may change the aspect ratio of the im-

age, we have experimentally found that it produces the best
results as opposed to cropping the images, which is corrob-
orated in [8]. The CNNs are initialized with the pre-trained
ImageNet weights [16] and then fine-tuned for 20 epochs on
the whole training set. Learning rate is set to 0.00001, and di-
vided by 10 when the training loss stops decreasing. It takes
around 4 days for each model to finish 20 epochs on a single
NVIDIA TITAN X GPU.

4.3. Regression model results

For the regression task, we use the Mean Squared Error
(MSE) as the evaluation metric, which is the same as in [10]:

MSE =
1

M

MX

i=1

(yi � ŷi)
2 (4)

Here, yi and ŷi are the predicted and the groundtruth aesthetic
scores, respectively, for the ith image. M is the number of im-
ages in the test set. Note that sample weights are not applied
in the evaluation metric.

Two regression CNN models with the same architecture
are trained: a Regression model with Sample Weights (SWR)
and a Regression model with No Sample Weights (NSWR).
The performance is shown in Table 1.

Table 1. MSE of different models, results of the top 5 meth-
ods are taken from [10].

RS-test ED-test
GIST linear-SVR 0.5222 NA

GIST rbf-SVR 0.5307 NA
BoVW SIFT linear-SVR 0.5401 NA

BoVW SIFT rbf-SVR 0.5513 NA
Kao et al. [10] 0.4510 NA

No SW regression (NSWR) 0.3373 1.3951
SW regression (SWR) 0.4847 0.9754

The top four methods in Table 1 combine the generic im-
age descriptors, GIST [20], SIFT [13] and Bag-of-Visual-
Words (BoVW) [21], together with the Support Vector Re-
gression (SVR) with linear or rbf kernel [22]. Refer to [4,10]
for details of these methods. Note that none of the previous
methods was evaluated on a test set with balanced distribu-
tion, namely the ED-test we created.

Our regression model without sample weights (NSWR)
outperforms all the state-of-the-art methods on the RS-test,
while the model with sample weights (SWR) further outper-
forms NSWR on the ED-test, demonstrating the effectiveness
of our regression model to predict aesthetics for images of a
variety of aesthetic quality. Note that SWR produces larger
MSE than NSWR and the method in [10] on the RS-test. This
is because the RS-test and training set have similar unbalanced
distribution. Hence, the bias introduced by the training set ac-



tually benefits these two models with better performance on
the RS-test.

However, such bias in fact limits the prediction range of
the models. The minimum and maximum values of the aes-
thetic scores predicted by the NSWR model on both test sets
are 3.54 and 6.46. For the SWR model, these two values are
2.06 and 7.53. We further illustrate this effect in Fig. 3, which
shows the mean MSE for different aesthetic scores. Using
sample weights clearly contributes to reducing the MSE for
images with aesthetic scores larger than 6 or smaller than 4.

Fig. 3. Mean MSE for different aesthetic scores on the (a)
RS-test, (b) ED-test.

We further evaluate our regression models on a classifica-
tion task, following the same scheme as in [10]. We observe
similar trends of the results as the regression task.

4.4. Histogram prediction model results

Two values can be extracted from the output of the histogram
prediction model, the aesthetic score and the standard devia-
tion (std) of the predicted user ratings. MSE in Eqn. 4 is used
to evaluate the aesthetic score and the Root Mean Square Er-
ror Ratio (RMSER) is used for evaluating the std:

RMSER =

q
1
M

PM
i=1(stdi � ˆstdi)2

1
M

PM
i=1

ˆstdi
(5)

where stdi is the std of the predicted user ratings for image i
and ˆstdi is the std of the groundtruth histogram.

We train a Histogram prediction model with Sample
Weights (SWH). Table 2 shows the results. SWH achieves
comparable performance as the SWR for predicting the aes-
thetic scores on the ED-test, while producing less than 20%
RMSER. Hence, the difficulty of aesthetics assessment for an
image is also reliably estimated.

Table 2. MSE and RMSER for the histogram prediction
model with sample weights (SWH).

MSE RMSER
RS-test 0.6358 26.75%
ED-test 1.0109 19.57%

5. APPLICATION

Our aesthetics prediction model can be used in many applica-
tions. We propose a simple application where our regression
model SWR is used to automatically choose an aesthetically
pleasing crop from the input image to fit into a target window,
as users are often required to fit an image into a fixed-sized
window. For an input image, we randomly take 1000 fixed-
sized crops 2 and feed them into SWR. The one with the high-
est score is chosen as the output. Two examples are shown
in Fig. 4. To prove the effectiveness of this application, we
conducted a crowd-sourcing experiment on 50 images where
we ask users to compare the crops chosen by our model with
the random crops. In total, 40 users participated in the exper-
iment. The results show that for 31 out of 50 images, users
prefer the crops chosen by our system over the random crops.

Fig. 4. Outputs from our image enhancement system. (a), (c)
are original images and (b), (d) are the square crops that have
the highest aesthetic scores.

6. CONCLUSION

In this paper, we propose to use sample weights while training
CNN models on the AVA dataset for aesthetics assessment.
Our experiments demonstrate the effectiveness of the sample
weights for reducing the bias in the training set. We train two
CNN models with sample weights, a regression model and a
histogram prediction model. Our CNN models can output not
only accurate aesthetic scores, but also reliable estimation of
the difficulty of aesthetics assessment. Based on the results
of our aesthetics prediction model, we further show an image
enhancement system that crops the input image for better aes-
thetic quality. Further exploration of applications using our
aesthetics prediction models will be conducted in the future.

2we use square crops in this experiment.
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Sabine Süsstrunk, “Image aesthetics depends on con-
text,” in Image Processing (ICIP), 2015 IEEE Interna-
tional Conference on. 2015, pp. 3788–3792, IEEE.

[10] Yueying Kao, Chong Wang, and Kaiqi Huang, “Visual
aesthetic quality assessment with a regression model,”
in Image Processing (ICIP), 2015 IEEE International
Conference on. 2015, pp. 1583–1587, IEEE.

[11] Weibao Wang, Jan Allebach, and Yandong Guo, “Image
quality evaluation using image quality ruler and graphi-
cal model,” in Image Processing (ICIP), 2015 IEEE In-
ternational Conference on. IEEE, 2015, pp. 2256–2259.

[12] Yandong Guo Jianyu Wang and Jan Allebach, “A
bayesian approach to infer ground truth photo aesthetic
quality score from psychophysical experiment,” in
IS&T/SPIE Electronic Imaging, 2016.

[13] David G. Lowe, “Distinctive image features from scale-
invariant keypoints,” International Journal of Computer
Vision, vol. 60, no. 2, pp. 91–110, 2004.

[14] Gabriela Csurka and Florent Perronnin, “Fisher vec-
tors: Beyond bag-of-visual-words image representa-
tions,” in Computer Vision, Imaging and Computer
Graphics. Theory and Applications. 2011, pp. 28–42,
Springer.

[15] Florent Perronnin, Jorge Sánchez, and Thomas
Mensink, “Improving the Fisher kernel for large-scale
image classification,” in Computer Vision – ECCV 2010.
2010, pp. 143–156, Springer.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton, “Imagenet classification with deep convolutional
neural networks,” in Advances in Neural Information
Processing Systems 25 (NIPS 2012). 2012, pp. 1097–
1105, Curran Associates, Inc.

[17] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and
Andrew Zisserman, “Return of the devil in the details:
Delving deep into convolutional nets,” in Proceedings
of the British Machine Vision Conference, 2014.

[18] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich, “Go-
ing deeper with convolutions,” in Computer Vision and
Pattern Recognition (CVPR), 2015 IEEE Conference on,
2015, pp. 1–9.

[19] Karen Simonyan and Andrew Zisserman, “Very deep
convolutional networks for large-scale image recogni-
tion,” CoRR, vol. abs/1409.1556, 2014.

[20] Aude Oliva and Antonio Torralba, “Modeling the shape
of the scene: A holistic representation of the spatial en-
velope,” International Journal of Computer Vision, vol.
42, no. 3, pp. 145–175, 2001.

[21] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta
Willamowski, and Cédric Bray, “Visual categorization
with bags of keypoints,” in Workshop on Statistical
Learning in Computer Vision, ECCV, 2004, pp. 1–22.

[22] Alex J Smola and Bernhard Schölkopf, “A tutorial on
support vector regression,” Statistics and Computing,
vol. 14, no. 3, pp. 199–222, 2004.


