

ÉCOLE POLYTECHNIQUE Edo Collins, Radhakrishna Achanta, Sabine Süsstrunk

Deep Feature Factorization for Concept Discovery

Which objects are shared across images? DFF allows to see how a deep CNN perceives similarities in an image set by producing heat maps that localize semantic objects and object-parts, shown on the right.

Deep Feature Factorization (DFF) is the application of **non-negative matrix factorization** to the feature activation of a deep neural network. In the case of deep convolutional networks, such as VGG-19 used here, each of the k DFF factors defines a heat map over the image batch.

DFF exploits the **geometry of rectified-linear units** (ReLU), ubiquitous across most deep neural architectures. ReLU setting negative values to true zeros (see below) creates favorable conditions for NMF in deep feature space, since the estimation problem $A \approx H_+W_+$ becomes less ill-posed as $||A||_0$ decreases, since $A_{i,j} = 0 \rightarrow \exists_k s.t. H_{i,k} = 0$.

ReLU and uniqueness of NMF

The correspondence to semantic parts is depth dependent, as shown over the layers of VGG-19.

The results shown are for a subset of the iCoseg dataset, which we further annotated with pixel-level part labels.

Applying DFF with increasing *k* reveals **a concept hierarchy**, e.g., the cluster qualitatively corresponding to *body* is split into *limbs* and *torso*, and then *limbs* is further split into *arms* and *legs*. DFF shows **invariance to complex transformations**, such as the varied leg positions of the gymnast on the left and back side of the elephants on the right.

5			YA	ARGC"	Abrilia .	Alla
Y	fii.				Auroch A	Aud
×					Automa (M
	1					

DFF with k = 1 achieves **state-of-the-art results** on weakly-supervised object co-localization on PASCAL VOC 2007, while being a much simpler method. Numbers indicate CorLoc scores.

Method	aero	bicy	bird	boa	bot	bus	car	cat	$^{\rm cha}$	cow	dtab	dog	hors	mbik	pers	$_{\rm plnt}$	$_{\rm she}$	sofa	trai	$\mathbf{t}\mathbf{v}$	mean
Joulin et al.	33	17	21	18	5	27	33	41	6	29	35	32	26	40	18	12	25	28	36	12	25.60
Cho et al.	50	43	30	19	4	62	65	43	9	49	12	44	64	57	15	9	31	34	62	32	36.60
Li et al.	73	45	43	28	7	53	58	45	6	48	14	47	69	67	24	13	52	26	65	17	40.00
Le et al. (A)	70	52	44	30	5	56	60	59	6	49	16	51	59	67	23	12	47	27	59	16	40.36
Le et al. (V)	72	62	48	28	12	64	59	72	6	37	12	45	67	72	19	11	37	29	67	23	41.97
DFF	61	49	54	20	10	60	46	79	4	51	32	67	66	70	19	15	40	32	66	20	42.87
DFF-CRF	64	47	50	16	10	62	52	75	8	53	35	65	65	72	16	14	41	36	63	30	43.51