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ABSTRACT

In this paper the authors analyze how the description and presenta-
tion of results about an algorithm proposed in the literature should
be modi ed in order to comply with the Reproducible Signal Pro-
cessing paradigm. We describe the problems one is faced with, by
speci cally focusing on how the description of the algorithm should
be improved with respect to the classical approach.

Keywords: Reproducible signal processing, veri ability of re-
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1. INTRODUCTION

Reproducibility lies at the very core of the scienti c method: an ex-
periment or test is reproducible if it can be replicated by researchers
independent from those that conducted it in the rst place. When an
experiment is successfully reproduced, chances that it be awed are
reduced. This is the reason why in certain scienti c disciplines such
as biology, physics or chemistry, great attention is paid not only to
the experimental part, but further to experiment replication.

Unfortunately, even though the signal processing research com-
munity widely recognizes the importance of the experimental part
of any work, very little has been done towards fully reproducible
signal processing. In many papers, algorithms are claimed to be su-
perior without providing enough empirical support, while in others
data supplied in the experimental section are so vague or scarce that
reproducibility is simply chimerical. Not to mention when the ex-
periments are purposely crafted to give an empirical instance that
allegedly “shows” the virtues of a certain algorithm.

In [1] Barni and Pérez-González have advocated the use of the
scienti c method in Signal Processing, with special emphasis on the
reproducibility of the experimental results. In order to enable re-
producible signal processing one should carefully describe the com-
plete framework that yielded the experimental results; although this
might seem a trivial task, in fact it is a thorny question, as all as-
pects of both the algorithm and the experimental setup should be
characterized beyond ambiguity. This pinpoints the dif culties of
reproducible signal processing and highlights the tremendous value
of those research groups that devote time and resources to implement
other researchers’ algorithms and repeat their experiments or carry
new ones to test the validity of such algorithms. We strongly believe
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that this type of research should also be academically rewarding as
it is in most scienti c areas.

From a practical point of view, we have developed a methodol-
ogy for conducting experimental work under the reproducible sig-
nal processing (RSP) paradigm. To test it, we chose a paper re-
cently published by the research group in Vigo, who also provided
a detailed additional description of the proposed algorithm. The re-
search group in Siena then tried to reproduce the results shown in
the original paper. Speci cally, we considered a case taken from
watermarking, an area in which we are active researchers. We have
chosen a speci c problem which has recently raised much interest
in watermarking, namely, oracle-like attacks. These attacks exploit
the binary answers of a watermarking detector in order to remove
the watermark with a minimal distortion. Since they play with the
sensitivity of the detector to slight changes of the input, they are
sometimes also known as sensitivity attacks. Although sensitivity
attacks have been known for some time, the recent publication of a
blind sensitivity algorithm (BNSA) [2] has cast doubts on the secu-
rity of most existing detectors, with immediate questions on their ap-
plication to copyright protection and even ngerprinting scenarios.
The impressive results allegedly achieved by this blind algorithm
and their potential practical consequences cry out for the reproduc-
tion of the experiments in another research lab. This, the simplicity
of the blind algorithm, and the fact that it has already been published
constituted our main motivations to test our methodology with this
example.

2. THE RSP FRAMEWORK

As mentioned in the introduction, the goal of BNSA is to remove the
watermark from watermarked contents without knowing the water-
marking algorithm. The BNSA algorithm is not a trivial one, so its
implementation will have to deal with some problems, but it is nei-
ther too complicated, hence it seems an ideal candidate for testing
the problems one has to face with to ensure results reproducibility.
The most straightforward approach to RSP requires that the authors
share the software implementing the proposed algorithms, and the
data set use to test it, with readers. In this way the possibility of
reproducing the results shown in the paper and/or testing them on
different data sets is automatically achieved. At the same time, rely-
ing on software availability also presents some inherent drawbacks,
that can be summarized as follows.

Software usability. Which format should be adopted for the
shared software? Providing executable les would tie the software to
a particular hardware, while at the same time source software needs
to be compiled, raising compatibility issues. Last but not least, who
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is going to ensure that the software made available by the authors can
be correctly compiled (run) on the most common platforms? Can re-
viewers be in charge of this time consuming, non-rewarding task?

Software readability. In order to be really useful, the shared
software should be easy to read. In this way readers can check that
the software really implements the algorithm described in the paper
and, possibly, test it under different working conditions. Again, it
is not clear who is going to check whether the software is properly
commented and if it is a faithful implementation of the algorithms
presented in the paper.

Licensing problems. Many instances may exist where the au-
thors are not willing to share their software to protect their copy-
rights and/or to not break licensing agreements. This is the case,
for instance, of algorithms implemented by relying on proprietary
libraries.

It is evident that regardless of software availability, the algo-
rithms and the experiments presented in the paper should be clearly
described in such a way that any reader could re-implement them
and re-obtain the same results. By keeping the above observations
in mind, the framework we tested and experimented with regard to
BNSA can be summarized as follows.

• A block diagram or a pseudo-language description of the pro-
posed algorithm must be included in the paper; the descrip-
tion should be detailed enough to allow readers to re-implement
the algorithm with no uncertainty.

• All the parameters needed to run the algorithm are clearly
listed in a table and the values used in the experiments de-
tailed.

• The data used to run the experiments are clearly de ned or
made available to readers and reviewers.

In the following section an RSP pseudo-code description of the
BNSA algorithm made according to the above rules is given. Read-
ers are encouraged to compare this description with the original one
[2]1. It goes without saying that any good paper should support the
pseudo-code with a standard description of the algorithm and the ra-
tionale behind it. Noticeably, readers will nd that in some points
this paper does not fully comply with the RSP rules stated above.
This was unavoidable, since writing an RSP-compliant paper would
have required much more room than was available.

3. AN RSP DESCRIPTION OF BNSA

The research group in Vigo provided a pseudo-code description of
the BNSA algorithm including the initialization procedure; as will
be shown in the next sections, this description plays a major role
in determining the performance of the algorithm. Such a pseudo-
code is reported below. To save space the pseudo-code is poorly
commented, it is our opinion, though, that some comments should
be inserted here and there to link the pseudo-code to the overall de-
scription of the algorithm.

Function z =BNSA(y)

1. Compute ν such that ν · y is outside the detection region, but
close to the boundary:

1For sake of brevity we can not report the original description of the al-
gorithm. We only want to stress out that though the paper that introduced
BNSA is widely recognized as a good one according to the standard param-
eters used by the signal processing community, it was not detailed enough to
allow the exact reproduction of the experimental results.

(a) ν0 = 0, ν1 = 1

(b) While (ν1 − ν0) > ε1

i. ν2 = (ν0 + ν1)/2

ii. y1 = ν2 · y
iii. If detect(y1) = 1 then ν1 = ν2, else ν0 = ν2

(c) t1 = (ν0 − 1) · y
(d) γ1 = energy(t1)

2. t2 = zero-mean Gaussian vector with variance σ2
T

3. β = minNorm(y, t2)

4. γ2 = energy(β · t2)

5. We choose the vector which minimizes distortion:
If γ1 < γ2 then t = t1, else t = t2

6. β = minNorm(y, t)

7. γstart = energy(β · t)
8. Slightly modify each component of the vector t:

(a) t′ = t

(b) t′[i] = t′[i] + ε2

(c) β = minNorm(y, t′)

(d) γ[i] = energy(β · t′)
9. Gradient estimation: ∇̂[i] = (γ[i] − γstart)/ε2

10. Look for a decreasing step-length:

(a) ξ = 10

(b) tnew = t − ξ · ∇̂
(c) β = minNorm(y, tnew)

(d) γstep = energy(β · tnew)

(e) While γstart < γstep

i. ξ = 0.7 · ξ
ii. tnew = t − ξ · ∇̂
iii. β = minNorm(y, tnew)

iv. γstep = energy(β · tnew)

11. The resulting signal is z = y + β · tnew

12. If z meets the desired quality criteria, then it is the solution.
Otherwise the algorithm is iterated again from point 6 with
t = tnew.

Function β = minNorm(y, t0).
It computes the minimum scaling factor β such that βt0 + y is out-
side the detection region:
1. Normalization of attacking vector: t = t0/||t0||
2. If detect(y + t) = 0 or detect(y − t) = 0,
then vout1 = t and vin1 = 0

3. If detect(y + t) = 1 and detect(y − t) = 1:

(a) While detect(y + t) = 1 and detect(y − t) = 1,
t = 2 · t

(b) vout1 = t and vin1 = t/2

4. If detect(y + t) = 0

(a) vout = vout1 and vin = vin1

(b) While ||vout − vin|| > ε3:
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i. vmiddle = (vout + vin)/2

ii. If detect(y + vmiddle) = 1,
then vin = vmiddle, else vout = vmiddle

(c) v+ = vout

5. If detect(y − t) = 0

(a) vout = −vout1 and vin = −vin1

(b) While ||vout − vin|| > ε3:
i. vmiddle = (vout + vin)/2

ii. If detect(y + vmiddle) = 1,
then vin = vmiddle, else vout = vmiddle

(c) v− = vout

6. If detect(y + t) = 1, then v = v−

7. If detect(y − t) = 1, then v = v+

8. If detect(y + t) = 0 and detect(y − t) = 0:

• If ||v+|| < ||v−||, then v = v+, else v = v−

9. The minimum-normed scaling factor β needed to obtain an
un-watermarked signal when β · t0 is added to y corresponds
to the ratio between any component of v and t0, therefore
β = v[i]/t0[i].

Parameter ε1 ε2 ε3 σ2
T

Value 10−6 10−3 10−8 10−4

Table 1. Values of the parameters used in the pseudo-code.

4. DIFFICULTIES

In order to test if the description in Section 3 is detailed enough to
reproduce the results given in [2], the research group in Siena imple-
mented the BNSA algorithm by relying on the pseudo-code descrip-
tion. The description of the initialization procedure was particularly
helpful, since the original paper did not give much information about
it. This seems to be a recurrent problem in many papers, that tend
to focus on the core part of the algorithms without giving enough
details with regard to initialization and/or stop conditions.

The implementation of the BNSA algorithm did not raise any
particular problem, hence proving the validity of the pseudo-code
description. However, several ambiguities were present mainly re-
lated to the exact de nition of the experimental conditions and the
way the watermarking algorithms attacked by BNSA were imple-
mented. A brief summary of the dif culties and ambiguities we had
to be faced with are summarized below. Note that we were trying to
reproduce the results reported in Figure 1 of the original paper [2].

• The pseudo-code description considers a version of BNSA
where an approximation of the gradient of the objective func-
tion to be minimized is used, while in the original paper the
minimization procedure also relied on the estimation of the
Hessian. This misunderstanding was due to the fact that sev-
eral versions of BNSA were used in [2] to obtain the results
on synthetic data and on real images. During the experiments
reported here the gradient-based version of BNSA was used
for synthetic data, whereas in [2] a version using also a diag-
onal approximation of the Hessian was used.

• Despite the detailed pseudo-code a few ambiguities were still
present with regard to initialization. How are singularities
like 0/0 treated by the detector? Moreover, a literal imple-
mentation of the algorithms described in the previous section
may result in in nite initialization loops. For instance, in the
SSangle case scaling the values of the marked sequence to-
wards zero results in an in nite loop in step 1. How were
these situations avoided in the original tests?

• The watermarking methods used for the tests, namely the
spread spectrum watermarking with correlation detection (SS
[3]), spread spectrum watermarking with correlation coef -
cient detection (SSangle [4]), JANIS ([5]), and spread spec-
trum watermarking for Generalized Gaussian hosts (GG [6]),
were not explicitly described. To reproduce results we had to
resort to the original papers, thus raising some interpretation
problems. For instance, in [4] the correlation-coef cient de-
tector is used in conjunction with multiplicative watermark-
ing, whereas in [2] it was used for additive watermarking.

• A major parameter heavily impacting the performance of any
watermarking scheme is the false detection probability, i.e.
the probability that the watermark is found in a non-marked
content. Though such a parameter was correctly supplied,
no hint was given with regard to the way the false detection
probability was estimated, hence rasing some ambiguities in
the way the detection threshold is computed by relying on the
false alarm rate. Given that several different equations can be
used stemming from different statistical assumptions, a fur-
ther interaction between the two research groups in Siena and
Vigo was necessary. In particular we found that in the origi-
nal implementation the statistical parameters determining the
detection threshold were updated only once every BNSA run,
whereas in the experiments carried out by the group in Siena,
such parameters were updated each time the detector was run.

• The results of the original plot in [2] are averaged over 100
trials and given in dB. How was the average over the different
experiments performed? By averaging the powers in natu-
ral units, or averaging powers in dBs? Even in this case, in-
teraction between the two groups was necessary to solve the
ambiguity.

4.1. Results

In this section we describe the results obtained by the Siena group
and compare them with those originally obtained by the Vigo group
and reported in [2]. Speci cally we focused on the asymptotic be-
havior of the BNSA algorithm, hence some discrepancies between
the initial part of the graphs are still visible (see gures below). The
thorough analysis we carried out, however, permitted us to under-
stand the reasons for such differences and provided us with very
useful insights about the performance of the BNSA algorithm.

In Figures 1 and 2 the original and reproduced results are given
respectively. Such gures report the average power of the attack nec-
essary to remove the watermark from the host sequence as a function
of the number of iterations of the BNSA algorithm. Since conver-
gence is reached after a few iterations we plotted the results only
until the 6th iteration. The results have been obtained by averaging
(before passing into the dB domain) the attack power necessary to
erase the watermark from 100 randomly generated sequences. Se-
quences were 2048 samples long. As speci ed in the original paper,
the random sequences were normally distributed with zero mean and
unitary variance. Only for the GG case the host sequence was gen-
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 The Blind Newton Sensitivity Attack  (University of Vigo) 

SS [ 6.044 dB]
SS Angle [ 6.044 dB]
JANIS [ 2.875 dB]
GGauss [ 1.775 dB]

Parameters:
DWR = 16 dB
Pfa = 10^( 4)
n = 2048
N = 4 [JANIS order]
ck = 0.5 [GGauss shape]

Fig. 1. Original results. The number in squared brackets reports the
attacking power after convergence is reached.
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 The Blind Newton Sensitivity Attack  (University of Siena) 

SS [ 5.955 dB]
SS Angle [ 5.817 dB]
JANIS [ 1.046 dB]
GGauss [ 2.036 dB]

Parameters:
DWR = 16 dB
Pfa = 10^( 4)
n = 2048
N = 4 [JANIS order]
ck = 0.5 [GGauss shape]

Fig. 2. Reproduced results. The number in squared brackets reports
the attacking power after convergence is reached.

erated according to the generalized Gaussian distribution with shape
parameter ck = 0.5.

Upon inspection of the results, several differences among the
curves immediately appear. When reproducing the results we found
that the BNSA always converges in one step. This contrasts with the
behavior reported in the original paper where in some cases power
convergence required more steps. The explanation of this fact is that
the results in Figure 2 were obtained by using only an approxima-
tion of the gradient of the objective function, without considering
any approximation of the Hessian. As to the attack power reached
after convergence, we found that the results obtained for the SS, the
SSangle and the GG cases are virtually identical, the few observed
differences being possibly due to statistical uctuations (however
this assumption should be veri ed theoretically). On the contrary, a
signi cant difference is observed when attacking the JANIS system.
To understand why, the Vigo group ran again its software by using
only the gradient approximation and disregarding the Hessian. The
results they obtained are much closer to those obtained by the Siena
group, hence proving that the discrepancy between the original and
the reproduced results is again due to the use of the gradient-based
version of BNSA.

Another important difference can be noticed by looking at the

starting point of the curves, i.e. by considering the output of the
initialization procedure. In the end we found that the discrepancies
were due to the implementation of the detection algorithms, specif-
ically to the way and how often the statistical parameters necessary
to x the detection thresholds were estimated. The group in Siena
estimated them each time the detector is run, whereas in the original
implementation such parameters were estimated only once for each
BNSA run. The impact of this different implementation is mainly
visibile at the beginning when the attack noise is high (and the sta-
tistical parameters need to be refreshed often). On the other side at
the right end of the plot, when the attack noise is low the different es-
timation strategy has a lower impact, hence justifying why we were
able to obtain the same asymptotic results.

5. CONCLUSIONS

The main lessons we learned can be summarized as follows.
RSP is extremely insightful. We now know much more about

the BNSA algorithm than we knew in advance, especially with re-
gard to the impact of the initialization procedure and the particular
approximation used to implement the gradient descent algorithm.

RSP relies on previous RSP. Ambiguities in the de nition of pre-
vious algorithms (the GG or JANIS detectors in our case), are carried
over to future uses. If a researcher is not being consistent with the
RSP paradigm, he/she is making dif cult its future application.

RSP is tough. We knew it, but possibly RSP is harder than ex-
pected. This strengthens our conviction that the birth of research
groups expressly devoted to this kind of research should be encour-
aged. As already proposed in [1], some rst steps into this direction
include the reservation of a section of SP journals to RSP-compliant
papers, and tightening the quality requirements applied to the exper-
imental part of papers.

RSP is space consuming. Papers written according to the RSP
paradigm are likely to be considerably longer than their classical
counterpart (in fact we were not able to write a fully reproducible
paper in the four pages allowed by the ICASSP format). Is RSP only
for archival journals and not suited for conference proceedings?
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