
REPRODUCIBLE COMPUTATIONAL EXPERIMENTS USING SCONS

S. Fomel

Bureau of Economic Geology
University of Texas at Austin
sergey.fomel@beg.utexas.edu

G. Hennenfent

Department of Earth and Ocean Sciences
University of British Columbia
ghennenfent@eos.ubc.ca

ABSTRACT

SCons (from Software Construction) is a well-known open-

source program designed primarily for building software. In

this paper, we describe our method of extending SCons for

managing data processing flows and reproducible computa-

tional experiments. We demonstrate our usage of SCons with

a simple example.

Index Terms— Software maintenance, Software reusabil-

ity, Software tools, Data processing, Signal processing

1. INTRODUCTION

This paper introduces an environment for reproducible com-

putational experiments developed as part of the “Madagascar”

software package. To reproduce the example experiments

in this paper, you can download Madagascar from http:
//rsf.sourceforge.net/. At the moment, the main
Madagascar interface is the Unix shell command line so that

you will need a Unix/POSIX system or Unix emulation under

Windows. Our focus, however, is not only on particular tools

we use in our research but also on the general philosophy of

reproducible computations.

1.1. Reproducible research philosophy

Peer review is the backbone of scientific progress. From the

ancient alchemists, who worked in secret on magic solutions

to insolvable problems, the modern science has come a long

way to become a social enterprise, where hypotheses, theo-

ries, and experimental results are openly published and veri-

fied by the community. By reproducing and verifying previ-

ously published research, a researcher can take new steps to

advance the progress of science.

During the last century, computational studies emerged as

a new scientific discipline. Computational experiments are

carried out on a computer by applying numerical algorithms

to digital data. How reproducible are such experiments? On

one hand, reproducing the result of a numerical experiment

is a difficult undertaking. The reader needs to have access

to precisely the same kind of input data, software and hard-

ware as the author of the publication in order to reproduce the

published result. It is often difficult or impossible to provide

detailed specifications for these components. On the other

hand, basic computational system components such as oper-

ating systems and file formats are getting increasingly stan-

dardized, and new components can be shared in principle be-

cause they simply represent digital information transferable

over the Internet.

The practice of software sharing has fueled the mirac-

ulously efficient development of Linux, Apache, and many

other open-source software projects. Its proponents often re-

fer to this ideology as an analog of the scientific peer review

tradition. Eric Raymond writes [1]: “ Abandoning the habit of
secrecy in favor of process transparency and peer review was
the crucial step by which alchemy became chemistry. In the
same way, it is beginning to appear that open-source devel-
opment may signal the long-awaited maturation of software
development as a discipline.” While software development is
trying to imitate science, computational science needs to bor-

row from the open-source model in order to sustain itself as a

fully scientific discipline. In words of Randy LeVeque, [2], “

Within the world of science, computation is now rightly seen
as a third vertex of a triangle complementing experiment and
theory. However, as it is now often practiced, one can make
a good case that computing is the last refuge of the scientific
scoundrel [...] Where else in science can one get away with
publishing observations that are claimed to prove a theory or
illustrate the success of a technique without having to give
a careful description of the methods used, in sufficient detail
that others can attempt to repeat the experiment?”

Nearly ten years ago, the technology of reproducible re-

search was pioneered by Jon Claerbout and his students at the

Stanford Exploration Project (SEP). SEP’s system of repro-

ducible research requires the author of a publication to doc-

ument creation of numerical results from the input data and

software sources to let others test and verify the result repro-

ducibility [3, 4]. The discipline of reproducible research was

also adopted and popularized in the statistics and wavelet the-

ory community by Buckheit and Donoho [5, 6, 7]. However,

the adoption or reproducible research practice by computa-

tional scientists and engineers has been slow. Partially, this is

caused by difficult and inadequate tools.

IV ­ 12571­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007

1.2. Tools for reproducible research

The reproducible research system developed at SEP is based

on “make [8]”, a Unix software construction utility. The “make”

program keeps track of dependencies between different com-

ponents of the system and the software construction targets,

which, in the case of a reproducible research system, turn into

figures and manuscripts. The targets and commands for their

construction are specified by the author in “makefiles”, which

serve as databases for defining source and target dependen-

cies. A dependency-based system leads to rapid development,

because when one of the sources changes, only parts that de-

pend on this source get recomputed.

Unfortunately, “make” is not well designed from the user

experience prospective. It employs an obscure and limited

special language, which often appears confusing to unexperi-

enced users. According to Peter van der Linden [9], “Send-
mail and make are two well known programs that are pretty
widely regarded as originally being debugged into existence.
That’s why their command languages are so poorly thought
out and difficult to learn.” The inconvenience of “make” com-
mand language is also in its limited capabilities. The repro-

ducible research system developed by Schwab et al [4] in-

cludes not only custom “make” rules but also an obscure and

non-portable agglomeration of shell and Perl extensions

Several alternative systems for dependency-checking soft-

ware construction have been developed in recent years. One

of the most promising new tools is SCons, enthusiastically

endorsed by Dubois [10]. The SCons initial design won the

Software Carpentry competition sponsored by Los Alamos

National Laboratory in 2000 in the category of “a dependency

management tool to replace make”. Some of the main advan-

tages of SCons are:

• SCons configuration files are Python scripts. Python is

a modern programming language praised for its read-

ability, elegance, simplicity, and power [11].

• SCons offers reliable, automatic, and extensible depen-

dency analysis and creates a global view of all depen-

dencies.

• While “make” relies on timestamps for detecting file

changes (creating numerous problems on platforms with

different system clocks), SCons uses by default a more

reliable detection mechanism employing MD5 signa-

tures. It can detect changes not only in files but also in

commands used to build them.

• SCons is publicly released under a liberal open-source

license1

In this paper, we propose to adopt SCons as a new plat-

form for reproducible research in scientific computing and

signal processing.

1As of time of this writing, SCons is in a beta version 0.96 approaching

the 1.0 official release. See http://www.scons.org/.

2. MADAGASCAR PACKAGE OVERVIEW

Report/paper

(SCons + LaTeX)

Processing flow

(SCons + Python)

Program

(C)

Program

(Fortran)

Program

(C++)

Program

(Python)

Program

(Mathematica)

Program

(Matlab)

Report/paper

(SCons + LaTeX)

Book

(SCons + LaTeX)

Processing flow

(SCons + Python)

Processing flow

(SCons + Python)

D
o
cu

m
en

tio
n

(P
D

F
 &

 H
T

M
L

)
P

ro
cessin

g
 flo

w
s

Command lineProgram

(SEP)

Program

(SU)

Program

(Delphi)

Fig. 1. Madagascar’s multi-layer structure.

Madagascar is a multi-layered software package (Fig. 1).

2.1. Command line

Madagascar is first of all a collection of command line pro-
grams. Most programs act as filters on input data and can be

chained in a Unix pipeline, e.g.

sfspike n1=200 | sfnoise rep=y >noise.rsf

Although these programs mainly focus at this point on

geophysical applications, users can use the API (application

programmer’s interface) for writing their own software to ma-

nipulate Regularly Sampled Format (RSF) files, Madagascar
file format. The main software language of Madagascar is
C. Interfaces to other languages (C++, Fortran-77, Fortran-90,

Python) are also provided.

2.2. Data processing flows

Madagascar is also an environment for reproducible nu-
merical experiments in a very broad sense. These numeri-

cal experiments (or “computational recipes”) can be done not

only using Madagascar command line programs but also
Matlab, Mathematica, Python, or other seismic packages (e.g.

SEP, Seismic Unix). We adopted SCons for this part as we

shall demonstrate later.

2.3. Research documentation

The most upper layer of Madagascar and maybe the most
critical for reproducible research is documentation. It estab-

lishes a direct link between the figures of a paper or a re-

port and the codes that were used to generate them. This

layer uses SCons in combination with LATEX to generate PDF,

HTML, and MediaWiki files real easy and undoubtly makes

Madagascar a convenient environment for technology trans-
fer, report, thesis, and peer-reviewed publication writing.

IV ­ 1258

3. EXAMPLE REPRODUCIBLE EXPERIMENT

Fig. 2. The output of the first numerical experiment.

The main SConstruct commands defined in our repro-
ducible research environment are collected in Table 3.

To follow the first example, select a working project direc-

tory and copy the following code to a file named SConstruct2.

from r s f p r o j import ∗

Download t h e i n p u t da ta f i l e
Fe t ch (’ l e n a . img ’ , ’ imgs ’)

Crea t e RSF header
Flow (’ l e n a . hdr ’ , ’ l e n a . img ’ ,

’ ’ ’ echo n1=512 n2=513 i n =$SOURCE

d a t a f o rm a t = n a t i v e u c h a r ’ ’ ’ , s t d i n =0)

Conver t t o f l o a t and window ou t f i r s t t r a c e
Flow (’ l e n a ’ , ’ l e n a . hdr ’ ,

’ dd t ype = f l o a t | window f2 =1 ’)

D i sp l a y
Re s u l t (’ l e n a ’ ,

’ ’ ’

g r ey t i t l e =”Hel lo , World ! ” t r a n s p =n

c o l o r =b b i a s =128 c l i p =100 s c r e e n r a t i o =1

’ ’ ’)

Wrap up
End ()

2The source of this file is also accessible at book/rsf/scons/easystart/S-

Construct.

This is our “hello world” example that illustrates the basic use

of some of the commands presented in Table 3. The plan for

this experiment is simply to download data from a public data

server, to convert it to an appropriate file format and to gen-

erate a figure for publication. But let us have a closer look at

the SConstruct script and try to decorticate it.

from r s f p r o j import ∗

is a standard Python command that loads theMadagascar project

management module rsfproj.py which provides our ex-
tension to SCons.

Fe t ch (’ l e n a . img ’ , ’ imgs ’)

instructs SCons to connect to a public data server (the de-

fault server if no FTP server information is provided) and

to fetch the data file lena.img from the data/imgs di-
rectory. Try running “scons -Q lena.img” on the com-
mand line. The successful output should look like

bash$ scons -Q lena.img
retrieve(["lena.img"], [])

with the target file lena.img appearing in your directory.
In the following examples, we will use -Q (quiet) option of
scons to suppress the verbose output.

Flow (’ l e n a . hdr ’ , ’ l e n a . img ’ ,

’ ’ ’ echo n1=512 n2=513 i n =$SOURCE

d a t a f o rm a t = n a t i v e u c h a r ’ ’ ’ , s t d i n =0)

prepares the Madagascar header file lena.hdr using the

standard Unix command echo.

bash$ scons -Q lena.hdr
echo n1=512 n2=513 in=lena.img \
data_format=native_uchar > lena.hdr

Since echo does not take a standard input, stdin is set to 0
in the Flow command otherwise the first source is the stan-

dard input. Likewise, the first target is the standard output

unless otherwise specified. Note that lena.img is referred
as $SOURCE in the command. This allows us to change the
name of the source file without changing the command.

The data format of the lena.img image file is uchar
(unsigned character), the image consists of 513 traces with

512 samples per trace. Our next step is to convert the image

representation to floating point numbers and to window out

the first trace so that the final image is a 512 by 512 square.

The two transformations are conveniently combined into one

with the help of a Unix pipe.

scons -Q lena.rsf
< lena.hdr /RSF/bin/sfdd type=float | \
/RSF/bin/sfwindow f2=1 > lena.rsf

IV ­ 1259

Table 1. Basic methods of an rsfproj object.
Fetch(data file,dir[,ftp server info])
A rule to download<data file> from a specific directory<dir> of an FTP server<ftp server info>.
Flow(target[s],source[s],command[s][,stdin][,stdout])
A rule to generate <target[s]> from <source[s]> using command[s]
Plot(intermediate plot[,source],plot command) or
Plot(intermediate plot,intermediate plots,combination)
A rule to generate <intermediate plot> in the working directory.
Result(plot[,source],plot command) or
Result(plot,intermediate plots,combination)
A rule to generate a final <plot> in the special Fig folder of the working directory.
End()
A rule to collect default targets.

Notice that Madagascar modules sfdd and sfwindow get
substituted for the corresponding short names in the SConst-
ruct file. The file lena.rsf is in a regularly sampled for-
mat. In the last step, we will create a plot file for displaying
the image on the screen and for including it in the publication.

R e s u l t (’ l e n a ’ ,

’ ’ ’

g r ey t i t l e =”Hel lo , World ! ” t r a n s p =n

c o l o r =b b i a s =128 c l i p =100 s c r e e n r a t i o =1

’ ’ ’)

Notice that we broke long command strings into multiple lines

by using Python’s triple quote syntax. The Result com-

mand has special targets associated with it. Try, for example,

“scons lena.view” to observe the figure Fig/lena.vpl
generated in a specially created Fig directory and displayed
on the screen. The output should look like Figure 2.

1. Run scons -c. The -c (clean) option tells SCons to
remove all default targets (the Fig/lena.vpl image
file in our case) and also all intermediate targets that

it generated. Run scons again, and the default target
will be regenerated.

2. Edit your SConstruct file and change some of the
plotting parameters. For example, change the value

of clip from clip=100 to clip=50. Run scons
again and observe that only the last part of the process-

ing flow (precisely, the part affected by the parameter

change) is being run. SCons is smart enough to recog-
nize that your editing did not affect any of the previous

results in the data flow chain! Keeping track of depen-

dencies is the main feature that separates data process-

ing and computational experimenting with SCons from

using linear shell scripts. For computationally demand-

ing data processing, this feature can save you a lot of

time and can make your signal processing experiments

more efficient and enjoyable.

4. REFERENCES

[1] E. S. Raymond, The Art of UNIX programming,
Addison-Wesley, 2004.

[2] R. J. LeVeque, “Wave propagation software, compu-

tational science, and reproducible research,” in Proc.
International Congress of Mathematicians, to appear,
2006.

[3] J. Claerbout, “Electronic documents give reproducible

research a new meaning,” in 62nd Ann. Internat. Mtg.
1992, pp. 601–604, Soc. of Expl. Geophys.

[4] M. Schwab, M. Karrenbach, and J. Claerbout, “Mak-

ing scientific computations reproducible,” Computing
in Science & Engineering, vol. 2, pp. 61–67, 2000.

[5] J. Buckheit and D. L. Donoho, “Wavelab and repro-

ducible research,” in Wavelets and Statistics, vol. 103,
pp. 55–81. Springer-Verlag, 1995.

[6] B. B. Hubbard, The World According to Wavelets: The
Story of a Mathematical Technique in the Making, AK
Peters, 1998.

[7] S. Mallat, A wavelet tour of signal processing, Aca-
demic Press, 1999.

[8] R. M. Stallman, R. McGrath, and P. D. Smith, GNU
make: A Program for Directing Recompilation, GNU
Press, 2004.

[9] P. van der Linden, Expert C Programming, Prentice

Hall, 1994.

[10] P. F. Dubois, “Why Johnny can’t build,” Computing in
Science & Engineering, vol. 5, no. 5, pp. 83–88, 2003.

[11] G. Van Rossum, Python Tutorial, Iuniverse Inc, 2000.

IV ­ 1260

