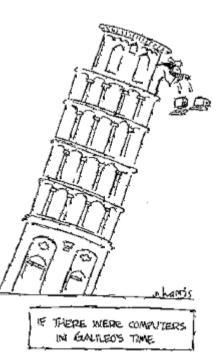
Reproducible Computational Experiments Using SCons

Sergey Fomel

University of Texas at Austin

Gilles Hennenfent



University of British Columbia

Problem

How to publish computational results?

- scientific publication
- technology transfer
- Within the world of science, computation is now rightly seen as a third vertex of a triangle complementing experiment and theory. However, as it is now often practiced, one can make a good case that computing is the last refuge of the scientific scoundrel.
 Randall LeVeque

Outline

Reproducible research at Stanford

- lessons
- Reproducible computational experiments
 - Implementation in MADAGASCAR
 - test-driven development using SCons
- **Road to the future**
 - community effort

Reproducible Research at Stanford

Donald Knuth

- literate programming
- A computer program should be written with human readability as a primary goal.

Jon Claerbout

- reproducible research
- The purpose of reproducible research is to facilitate someone going a step further by changing something.

David Donoho

- reproducible research using Matlab
- An article about computational science in a scientific publication is not the scholarship itself, it is merely advertising of the scholarship.

Lessons of Reproducible Research

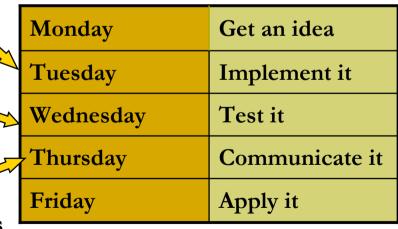
Motivation

- scientific integrity
- robust software development
- technology transfer
- **Tools**
 - computational experiments
 - publication
- □ Maintenance
 - test-driven development

The Bureau of Economic Geology conducts reproducible computational experiments using "Madagascar", an open-source software package designed to provide a convenient technology transfer tool for researchers working with digital data processing.

To learn more about "Madagascar" please visit:

http://rsf.sourceforge.net/



Implementation in MADAGASCAR

Open-source package (GPL)

- released in 2006
- 16 developers
- Three levels
 - command-line modules
 - **C**, Fortran, Python, Matlab
 - signal processing scripts
 SCons
 - publications
 - LaTeX + latex2html + SCons

http://rsf.sourceforge.net/

SCons (Software Construction)

Python-based replacement for "make"

- reliable, automatic, and extensible dependency analysis
- winner of the Software Carpentry competition
- configuration files are Python scripts
- Features
 - support for different programming languages
 - support for parallel builds.
 - configuration support analogous to autoconf
 - cross-platform
 - open-source
- Lescons http://www.scons.org

SConstruct File for Compilation

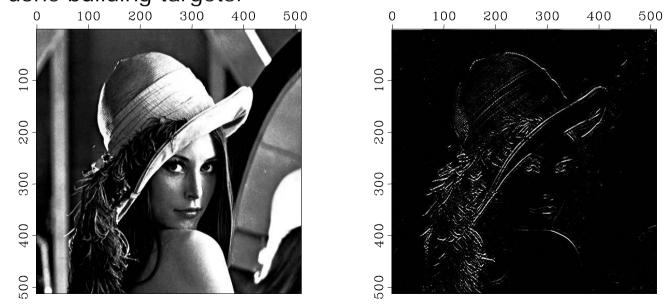
Program('program', ['main.c', 'file1.c', 'file2.c'])

bash\$ scons scons: Building targets ... cc -c -o file1.o file1.c cc -c -o file2.o file2.c cc -c -o main.o main.c cc -o program main.o file1.o file2.o scons: done cleaning targets.

SConstruct File for Signal Processing

import rsfproj as p

```
# Download data
p.Fetch('lena.img','imgs')
```


```
# Convert to a floating-point format
p.Flow('lena','lena.img',
'''echo n1=512 n2=513 in=$SOURCE
    data_format=native_uchar | transp |
    window f1=1 | dd type=float''')
```

```
# Bandpass filtering
p.Flow('band','lena','bandpass flo=0.1')
```

```
# Plotting
for img in ('lena', 'band'):
    p.Plot(img, 'grey allpos=y wanttitle=n screenratio=1')
```

Execution

bash\$ scons scons: Building targets ... retrieve(["lena.img"], []) < lena.img echo n1=512 n2=513 in=lena.img data_format=native_uchar | \ /path/transp | /path/window f1=1 | /path/dd type=float > lena.rsf < lena.rsf /path/bandpass flo=0.1 > band.rsf < lena.rsf /path/drey allpos=y wanttitle=n screenratio=1 > band.vpl < lena.rsf /path/drey allpos=y wanttitle=n screenratio=1 > lena.vpl scons: done building targets.

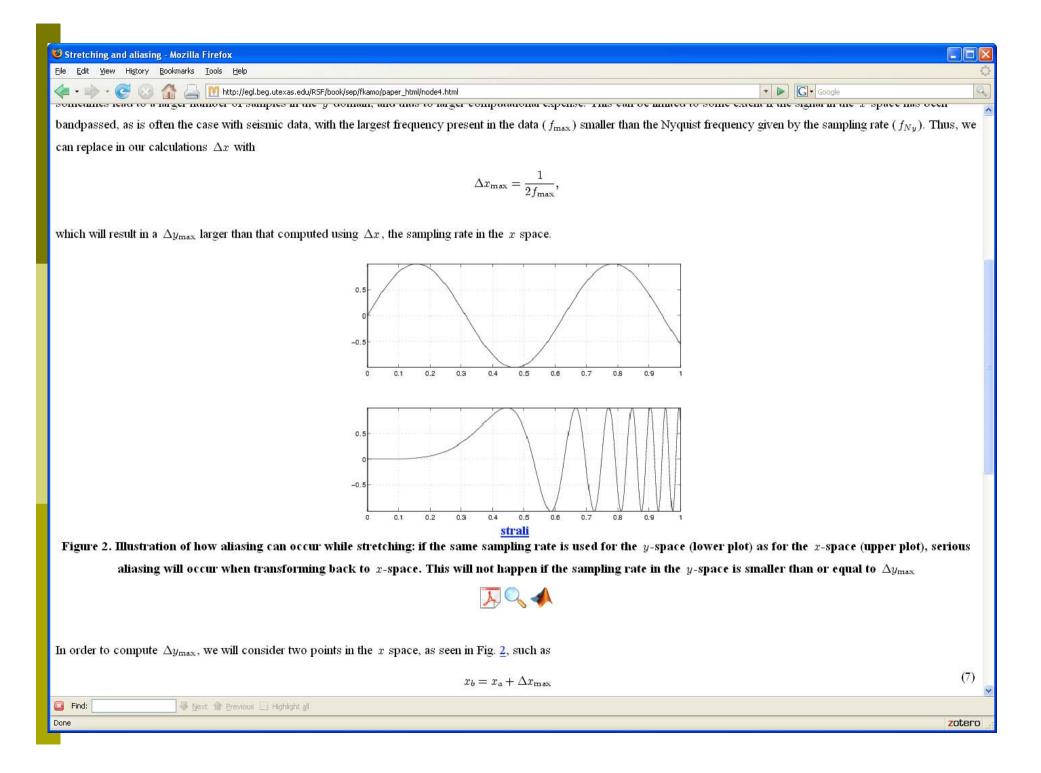
Experimentation

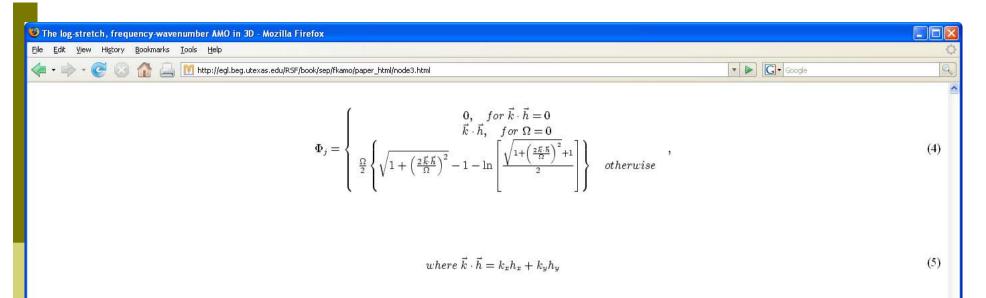
bash\$ sed s/flo=0.1/flo=0.2/ < SConstruct > SConstruct2
bash\$ mv SConstruct2 SConstruct
bash\$ scons
scons: Building targets ...
< lena.rsf /path/bandpass flo=0.2 > band.rsf
< band.rsf /path/grey allpos=y wanttitle=n screenratio=1 > band.vpl
scons: done building targets.

bash\$ sed s/wanttitle=n/title=Lena/ < SConstruct > SConstruct2 bash\$ mv SConstruct2 SConstruct bash\$ scons

scons: Building targets ...

< band.rsf /path/grey allpos=y title=Lena screenratio=1 > band.vpl < lena.rsf /path/grey allpos=y title=Lena screenratio=1 > lena.vpl scons: done building targets.

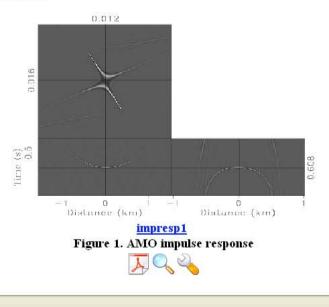

SConstruct File for Publication


import rsftex as t

Compile paper from LaTeX source in icassp.tex
t.Paper('icassp',options='12pt',use='hyperref,amsmath')

bash\$ scons icassp.pdf
...
bash\$ scons icassp.html
...
bash\$ scons icassp.install
...

http://rsf.sourceforge.net/Reproducible_Documents



and j can take the values 1 or 2. The frequency domain variables must have incorporated in their value a 2π constant (they are defined according to equation (2)) 4. Do reverse 3D FFT in order to obtain the $P(\tau, m_x, m_y)|_{\vec{h}_x}$ cube.

5. Do reverse log stretch along the time axis and affix to the top of the cube the slices from times smaller than t_c . The final result is a $P(t, m_x, m_y)|_{\vec{h}_2}$ cube.

Figure $\underline{1}$ shows the impulse response of the above described AMO.

zotero

<mark>esp/SConstruct - Mozilla Firefox</mark> it <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ool:	lit View Higtory Bookmarks Tools Help				
🕪 - Cel 📀 🏠 🛄 IM http://egl.beg.utexas.edu/RSF/book/sep/fkamo/impresp.html			- Diagle		
<mark>from</mark> rsfproj <mark>impor</mark>	t *				
	3 axis=2 fft3 axis=3'				
ifft3 = 'fft3 axis	=3 inv=y fft3 axis=2 inv=y	fft1 inv=y'			
# ol below is t_c	(min. cutoff time) on pag. 1 in	paper			
Flow('spike',None,					
T T T					
spike n1=128 o1=0.4	d1=0.0032 k1=65				
	536 d2=0.012 k2=129				
	024 d3=0.016 k3=65				
•••)					
Flow('filt','spike	'.fft3 + \				
' dipfilter v1=-2.5 v2=-1.5 v3=1.5 v4=2.5 taper=2 pass=0 dim=3 ' \					
+ ifft3)					
<pre>Flow('oper','spike</pre>	fft3','fkamo h2=2 f2=10 h1=1.8	f1=30')			
for case in ('spik	e','filt'):				
Flow(case+'fft	3', case, 'stretch rule=L dens=4	' + fft3)			
Flow(case+'amo	',[case+'fft3','oper'],				
	prod \${SOURCES[1]} %s stret	ch rule=L dens=4 inv=y			
r'' % iff Elow(coco+ibut	t3) e',case+'amo','byte pclip=100 q	ainnanal =at)			
IIOW(Case+ byc	e ,caser amo , byce pciip-iou g	ainpanei-a)			
Result ('impresp1',					
'grey3 fram	e1=65 frame2=129 frame3=65 poin	t1=0.333 wanttitle=n')			
Result ('impresp2',	'spikebyte', e1=65 frame2=97 frame3=97 point	1=0 333 wenttitle=n')			
Result ('fkfilter',		r o.sss wanderere h ,			
	e1=65 frame2=97 frame3=97 point	1=0.333 wanttitle=n')			
End()					
sfspike	sfdipfilter	sfadd			
sffft1	sffkamo	sfbyte			
sffft3	sfstretch	sfgrey3			
T					

Future: Community Support

Special issue journals

- Computing in Science & Engineering
- □ Web 2.0 publications
 - <u>http://www.insight-journal.org/</u>
- Wikipedia entry for reproducible research

Motivation

- scientific integrity
- robust software development
- technology transfer

