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The performance of CNN based SR is limited on real photographs Experimental setting We use the DPED [4] dataset to extract realistic blur-kernels and the DIV2K [5] dataset as HR images.
as the bicubic blur-kernel assumed in these networks deviate from

real camera-blur. Gaussian and realistic kernels We conduct x2 SR experiments on 4 synthetic LR datasets that are generated using

different Gaussian kernels (g, -5, 94 s and g, ») and realistic blur-kernels estimated from DPED. KMSR successfully reconstructs the
detaile textures and edges in the HR images and produces better outputs.

kernel | SRCNN VDSR EDSR DBPN KMSR
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bicubic blur-kernel examples of real camera blur-kernel

. L . 816 25.72  25.72 25.69 2570 27.63
To improve the generalization capability of SR networks, we present

a kernel modeling super-resolution network (KMSR) that ; g? g, - 25.30 2534 25.28 25.28 27.15
iIncorporates blur-kernel modeling in the training. =
& realistic| 25.30  25.29 25.28 25.30 27.52
unpaired data %
Quantitative results in terms of PSNR (dB)
e Low-Resolution '\ /  High-Resolution )
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X — Zoom-in super-resolutlon We build a zoom-in dataset by capturing photos with the same camera, with 35mm focal length

(serving as LR mput ) and 70mm focal Iength servmg as reference output).
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Stage 1:
n
kernel pool building |.
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Stage 2: | | | _ |
super-resolution Real photographs We validate our method with a psychovisual experiment on 35 users. For 44 out of 50 images, the results
_ s Y ~ from KMSR are preferred over the other methods.
Convolutional Neural Paired Dataset 1 S T
Network [3] R £Sn EDSR DBPN KMSR
el e #preference| 2/50 0/50 44/50
. N o N EDSR [3] DBPN [8] KMSR bone Raw votes | 119 26 1605
Our proposed KMSR consists of two stages: e e\ 8
1) a pool of rgallstlc qur-kgrneIs extragted from photographs and A oy #oreference shows the number of SR
augmented with a generative adversarial network; - 2 results from the specific method that
2) a super-resolution network with HR and corresponding LR B ML TATRR P ?f are chosen as
. . “the clearest and sharpest image”
Images constructed with the generated kernels. L by more than 50% of the participants.
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