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High Dynamic Range Image Rendering
With a Retinex-Based Adaptive Filter
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Abstract—We propose a new method to render high dynamic
range images that models global and local adaptation of the human
visual system. Our method is based on the center-surround Retinex
model. The novelties of our method is first to use an adaptive filter,
whose shape follows the image high-contrast edges, thus reducing
halo artifacts common to other methods. Second, only the lumi-
nance channel is processed, which is defined by the first compo-
nent of a principal component analysis. Principal component anal-
ysis provides orthogonality between channels and thus reduces the
chromatic changes caused by the modification of luminance. We
show that our method efficiently renders high dynamic range im-
ages and we compare our results with the current state of the art.

Index Terms—Color image rendering, high dynamic range, sur-
round-based Retinex, tone mapping.

I. INTRODUCTION

REPRODUCING an image that corresponds to direct ob-
servation of a scene is a nontrivial task. Indeed, the scene

irradiance captured by the human visual system (HVS) is pro-
cessed in a highly nonlinear manner. Digital cameras also cap-
ture the irradiance of the scene, but process it in a way that
differs from the treatment of the HVS. Consequently, the cap-
tured image often changes from the human perception of the
original scene. This difference is especially visible for high dy-
namic range (HDR) scenes. Dynamic range is defined by the
luminance ratio between the brightest and the darkest object in
a scene. A scene or an image is said to be HDR when its dy-
namic range exceeds by far the one of the capture or display
device. Scenes can have three or more orders of magnitude of lu-
minance variations (1000:1), which can be perceived by our vi-
sual system by means of adaptation [1]. A typical CRT monitor
can approximatively display two orders of magnitude (100:1).
A compression of the dynamic range is required when the scene
dynamic range exceeds the one of the display device.

The purpose of our method is to reproduce HDR images on
low dynamic range (LDR) display devices. This is commonly
called tone mapping or tone reproduction. We do not address
the problem of capturing HDR images; we use existing HDR
image databases.

Simple tone mapping algorithms globally compress the dy-
namic range using a logarithmic function, gamma function or
sigmoidal function. These point-to-point matching functions are
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Fig. 1. Example of HDR scene that requires local processing. Left: Image ren-
dered using a gamma correction. Right: Image rendered with the Retinex-based
adaptive filter method proposed in this paper that combines global compression
and local processing.

fast and suitable for LDR scenes but are not always sufficient to
render HDR scenes, whose dynamic range exceeds by far the
dynamic range of display devices. Processing an HDR image
only globally can cause a loss of contrast, which is apparent
in the loss of detail visibility. A local processing is thus neces-
sary in addition to global compression for the reproduction to
be visually appealing. Local processing allows to increase the
local contrast, which increases the visibility of some parts of the
image while the global compression scales the image’s dynamic
range to the output device’s dynamic range. A local processing
is also a better imitation of the HVS, which adapts locally to
each part of a scene in order to form a percept where all details
are visible [2], [3].

Fig. 1 shows an example of an HDR scene that requires local
processing. The left image was rendered using just a global tone
mapping (gamma correction) and the right image was rendered
using the method presented in this paper that combines global
compression and local processing. We observe that our method
retrieves details in the central, shadowed part of the scene while
just applying a gamma correction leaves the central part too
dark.

We have developed a local tone mapping algorithm that
solves the problems encountered by previously developed
methods, namely it does not produce halo artifacts nor local
“graying-out” artifacts, and provides good color rendition.
Halo artifacts are due to the proximity of two areas of very
different intensity. For example, if a dim area is close to a
bright window, the bright pixels can influence the processing
of the dim area and can cause a black halo around the bright
area. Moreover, local filtering tends to make pure black and
pure white low contrast areas turn gray. These phenomena are
illustrated in Fig. 2. The shadow on the face is a halo artifact
due to the background window. The black t-shirt looks washed
out due to the local filtering. Fig. 2 was computed with our
previous algorithm that combines several Gaussian constants
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Fig. 2. Example of halo artifacts and graying-out. The shadow on the face is a
halo artifact due to the background window. The black t-shirt looks washed out
due to the local filtering.

into a single filter [4]. The filter had a circular shape for every
pixel.

Our method belongs to the surround-based Retinex algo-
rithms [4]–[6] but differs in the way the surround is defined as
well as in the way the color channels are treated. Rather than
applying Retinex independently to R,G,B color channels, we
perform a principal component analysis (PCA) on the input
image and define an image-dependent linear transform. Then,
applying this transform to the R,G,B image, we obtain an
image whose first channel represents the luminance and the
other two channels represent chrominance. Retinex is applied to
the luminance channel only. The PCA provides orthogonality
among components and allows the color to remain relatively
stable despite the processing of the luminance. Concerning the
surround definition, we replace the traditional circular shape by
an adaptive surround, whose shape follows the high-contrast
edges and thus prevents halo artifacts. Such spatial processing
requires a greater computational time than global methods.
We address this by applying spatial adaptive filtering on a
downsampled version of the image.

This paper is organized as follows. Section II presents back-
ground information and related algorithms. The Retinex-based
adaptive filter method is described in Section III, while the color
processing is detailed in Section IV. Section V analyzes the
computational complexity of our method and proposes a way to
reduce it by computing the mask on a downsampled version of
the image. Section VI provides comparisons with other methods
that are state of the art; we discuss the different properties of
these methods and show our results. Section VII concludes this
paper.

II. BACKGROUND

Tone mapping algorithms intend to reproduce images that are
similar to what a person perceived when observing the corre-
sponding scene. The reader is referred to [7] for a general review
of tone mapping algorithms. Here, we only discuss the methods
relevant to our research. We first introduce human local adapta-
tion and models. Then, we present the Retinex theory of color
vision that also models human local adaptation, followed by
computational models based on it. We show that most of these
models cause halo artifacts. Third, we present algorithms that
propose a solution to reduce halo artifacts. Finally, we present
some existing solutions for color image processing in the pres-
ence of local tone mappings.

A. Models of HVS Local Adaptation

The HVS deals with the high dynamic range of natural scenes
by means of adaptation [2], [3]. We consider two kinds of adap-
tations: global and local adaptation. Global adaptation is the
adaptation to the average light level while local adaptation is
a local gain control that takes place as we visually scan a scene.

HVS models of global and local adaptation have been de-
veloped and applied to images. Spitzer and Semo [8] present a
model for color contrast based on retinal mechanisms and adap-
tation. It simulates the properties of opponent cells and double
opponent cells to predict the perceived image. Pattanaik et al.’s
model [3] is recognized as one of the most comprehensive com-
putational model of adaptation and spatial vision. It addresses
the problem of realistic tone reproduction based on multiscale
processing of the retinal image and adaptation processes. Al-
leysson and Süsstrunk [9] propose a three layer model of the
retina that includes a nonlinear encoding and two adaptation
levels. The first adaptation is provided by the photoreceptors’
adaptive sensitivity, which forms the first layer of the model.
The second layer is responsible for opponent encoding, and thus
provides normalization and contrast gain control. Then, the third
layer is formed by the ganglion cells that also provides an adap-
tive nonlinearity.

These algorithms were shown to accurately model psycho-
visual data. However, they are not convenient for image pro-
cessing due to complexity and poor visual results. What we aim
to develop is an image processing method that is biologically
plausible and that renders visually pleasing images. For that pur-
pose, we take inspiration from Retinex, a model of color vision
that has been widely used for image processing tasks.

B. Retinex Computational Models for Local Tone Mapping

Retinex is a theory of color vision developed by Land that in-
tends to explain how the visual system extracts reliable informa-
tion from the world despite changes of illumination [10], [11]. It
is based on a series of experiments carried out with a flat surface
composed of color patches and three controllable independent
light sources. Land showed in his experiments that there is little
correlation between the amount of radiation falling on the retina
and the apparent lightness of an object. He concludes that the
perceived color of a unit area is determined by the relationship
between this unit area and the rest of unit areas in the image,
independently in each wave-band, and does not depend on the
absolute value of light.

Retinex is a simplified model of the HVS and can con-
veniently be adapted for computational image rendering
algorithms. A variety of computational models have been
implemented. Their common principle is to assign a new value
to each pixel in the image based on spatial comparisons of light
intensities. Their differences are the order in which the pixels
are addressed, as well as the distance weighting functions.
The primary goal of Retinex is to decompose the image into
the reflectance image and the illuminant image to remove
illumination effect.

A first version of Retinex was developed by Land [10]. It
computes subsequent additions of pixel differences along a set
of one-dimensional random paths contained in the image. The
new value of each pixel, which represents the reflectance image,
is determined by the average over all paths. Horn reformulated
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Land’s Retinex and showed that the illuminant can be estimated
using a two-dimensional Laplacien [12]. Hurlbert formalized
the Retinex theory mathematically and showed that it is equiv-
alent to solving a Poisson equation [13]. Another theoretical
study of Retinex is provided by Brainard and Wandell [14]. They
study the convergence properties of Land’s Retinex and show
that, as the number of paths and their lengths increases, the re-
sult converges to a simple normalization. A further development
introduces randomly distributed paths using Brownian motion
[15]. Practically, the problems with these Retinex path-based
methods are their high computational complexity and the free
parameters, such as the number of paths, their trajectories, and
their lengths.

The iterative version of Retinex is a two-dimensional exten-
sion of the path version. It computes a new value for each pixel
by iteratively comparing pixels in the image [16]. The draw-
back of this implementation is that the number of iterations is
not defined and has a critical effect on the final result. Although
a method exists that automatically defines the number of itera-
tions using an early stopping technique [17], it remains an im-
portant issue. Sobol [18] contributes to the improvement of the
Retinex iterative version by introducing a ratio modification op-
erator. This operator allows better compression in high-contrast
areas while increasing the visibility in low contrast areas.

Surround-based Retinex computational models are nonit-
erative. Each pixel is selected sequentially and treated only
once. New pixel values are given by the ratio between each
treated pixel and a weighted average of its surround. This
technique was first proposed by Land [5] and then used by
Rahman et al. [6], [19] for their multiscale Retinex with color
restoration (MSRCR). The multiscale version is an extension
of the single-scale Retinex that aims to reduce halo artifacts
induced by the single-scale method. It is obtained by aver-
aging three single-scale Retinex using three different spatial
constants. The single-scale Retinex computes the new value of
each pixel by taking the ratio between the treated pixel and a
weighted average of its surround, whose weights are given by a
Gaussian function. The color restoration factor is introduced to
compensate for the loss of color saturation inherently present
in their method. This color correction greatly enhances the
saturation but does not ensure a correct rendition of colors [20].
In a previous paper, we propose a method based on MSRCR
[4]. Instead of using three single-scale Retinex, we include all
spatial constants into a single filter. The algorithm is applied
to the luminance channel and no color restoration is applied.
iCAM [21] is another rendering algorithm based on spatial
properties of vision (local adaptation and spatial filtering).
Unlike other surround-based methods, it is a complete model
of image appearance and quality. Moreover, it was specifically
developed to render HDR images.

An interesting approach to Retinex is provided by
Kimmel et al. [22], [23]. They reformulate the Retinex
theory, which is equivalent to illumination estimation, and
show that it can be formulated as a quadratic programming op-
timization problem. As decomposing the image into reflectance
image and illumination image is mathematically ill posed
[24], they redefine the problem using physically motivated
considerations, such as illumination smoothness and limited
dynamic range of the reflectances. Adding these constraints
allows their algorithm to converge to a unique solution, the

optimal illumination. However, the computational complexity
of quadratic programing optimization is high since each pixel
is an unknown to the minimization formula. In a later paper
[23], they propose several methods for reducing the complexity
of the above approach by restricting the solution to have a
pre-defined structure using either a look-up table, linear or
nonlinear filters, or a truncated set of basis functions. These
simplifications involve less free parameters and yield reason-
able yet suboptimal results. An application of their algorithm
for gamut mapping was recently published [25].

A common drawback of most local tone mapping methods
mentioned above is the possible apparition of halo artifacts
around light sources. Indeed, using the assumption that the illu-
minant is spatially smooth leads to halo artifacts in the presence
of high-contrast edges. Kimmel et al. [22], [23] added a halo
reduction term in their quadratic programming optimization
formulation to account for this problem. Similarly, the ratio
modification operator of Sobol [18] also contributes to reducing
halo artifacts.

C. Solving the Halo Artifact Problem Using Other Methods
Than Retinex

The presence of halo artifacts is a well-known issue when ren-
dering HDR images. Using a local operator involves a tradeoff
between the compression of dynamic range and the rendition of
the image. A strong compression leads to halo artifacts while
a weak compression does not provide the expected improve-
ment of detail visibility. This problem has been addressed by
Tumbling and Turk [26] who propose a method called low cur-
vature image simplifiers (LCIS) to increase the local contrast
while avoiding halo artifacts. LCIS uses a form of anisotropic
diffusion to enhance boundaries while smoothing nonsignifi-
cant intensity variations. This method does not take into ac-
count whether details are visibly significant. Consequently, the
resulting images tend to look unnatural due to excessive detail
visibility. Fattal et al. compress the dynamic range using a gra-
dient attenuation function defined by a multiresolution edge de-
tection scheme [27]. A new low dynamic range image is ob-
tained by solving a Poisson equation on the modified gradient
field. This approach provides good results but requires param-
eter tuning. Reinhard et al. developed a local method based on
the photographic dodging and burning technique [28]. They use
a circular filter, whose size is adapted for each pixel by com-
puting a measure of local contrast. A related method was pro-
posed by Ashikmin [29], which computes a measure of the sur-
round luminance for each pixel. This measure is then used for
the definition of the tone mapping operator. Both methods pro-
vide an efficient way of compressing the dynamic range while
reducing halo artifacts. However, the restriction to a circular sur-
round limits their performance. DiCarlo and Wandell investi-
gated tone mapping algorithms and the creation of halo artifacts
[30]. They suggest the use of robust operators to avoid these.
A robust Gaussian includes a second weight that depends on
the intensity difference between the current pixel and its spa-
tial neighbors. This technique preserves the sharpness of large
transitions. A recent approach based on LCIS and robust oper-
ators was proposed by Durand and Dorsey [31]. Their method
renders HDR images using bilinear filtering, an alternative for
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anisotropic diffusion. Their method is not a strict tone reproduc-
tion in the sense that it does not attempt to imitate human vision.
We will compare our method with theirs (see Section VI-C).

A first attempt to compare tone mapping algorithms is pub-
lished in [32], but assessing the quality of existing tone mapping
algorithms is still a major concern.

D. Color Processing

The way the color is processed by tone mapping methods
has also been extensively discussed in the literature. Funt and
Barnard [20], [33] investigate the MSRCR of Rahman et al. [6],
[19]. They argue that MSRCR tends to desaturate the colors, due
to the averaging operation on small neighborhoods that have a
graying-out effect on the image. Moreover, the color restora-
tion step added to compensate for the loss of saturation can at
best approximate the color that was removed and acts in a un-
predictable way. Funt and Barnard propose a color preserving
multiscale Retinex that is applied to the luminance channel.
A post-processing is also added to enhance the image satura-
tion. Monobe et al. propose a method to preserve local contrast
under different viewing conditions [34]. Their method treats lu-
minance only. They found also that the choice of the color space
greatly influences the final image. Yang and Rodriguez propose
two methods to process luminance while minimizing the chro-
matic changes [35]. They use shifting and scaling properties of
the LHS and YIQ spaces.

Kimmel et al. developed their quadratic programming opti-
mization algorithm for a monochrome image [22], [23]. Then,
they apply it separately either to the three color channels of an
RGB image or to the V channel of an HSV-encoded image.
They found that the first approach could lead to exaggerate color
shifts or to a loss of saturation. As previously found [20], [33],
applying the algorithm only to the V channel yields better re-
sults. In [18], Sobol proposes to apply its iterative Retinex-based
method to the luminance channel only. Unlike previously men-
tioned methods that define the luminance as a weighted sum of
R,G,B color channels, his luminance definition is given by the
maximum between these three channels. The final color image is
obtained by adding the new luminance to the log-encoded RGB
image.

In this paper, we propose a surround-based Retinex method
to render HDR images that uses an adaptive filter whose shape
follows the image contours. By adapting both the shape and the
size, it is more flexible than previous surround-based methods
and thus better prevents halo artifacts. The local processing is
applied to the luminance channel only. We use a color transfor-
mation based on PCA to ensure good color rendition.

III. RETINEX-BASED ADAPTIVE FILTER METHOD:
LUMINANCE PROCESSING

The global framework of our method is illustrated in Fig. 3.
Luminance and chrominance are processed in parallel but only
the luminance is treated by the Retinex-based adaptive filter
method (right part of Fig. 3). The luminance is given by the
first principal component of the input image, which is linear with
respect to scene radiance. A first global compression is applied
to both the luminance image and the linear RGB image .
Then, we apply the Retinex-based adaptive filter method in the
log-domain to the globally corrected luminance (see Sec-
tion III-B) while a logarithm is applied to the globally corrected

Fig. 3. Global framework. Our method uses parallel processing; one for lumi-
nance and one for chrominance. See text for explanation.

RGB image . is then transformed into a luminance chromi-
nance encoding through PCA. Its first component is replaced
by the treated luminance and the image thus obtained is
transformed back to RGB.

This section presents first the global tone mapping and then
the Retinex-based adaptive filter method that is applied to the
luminance channel only. The color image processing including
PCA transformation and saturation enhancement is described in
Section IV.

A. Step 1: Global Tone Mapping

Our method consists of two parts: a preliminary global
tone mapping followed by Retinex-based local processing. The
global tone mapping that is applied to the linear image performs
a first compression of the dynamic range. It can be compared to
the early stage of the visual system where a global adaptation
takes place [9], [36]. We design our global tone mapping func-
tion to be similar to the adaptation of photoreceptors, which
can be approximated by a power function. The curvature of
the function that determines the adaptation state depends on
the mean luminance in the field of view [9]. Consequently, we
compute the exponent of the power function from the average
luminance of the image.
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We define the luminance image as the first principal com-
ponent of the linear image . Let be the luminance image
encoded linearly, whose maximum value is 1. The nonlinear lu-
minance is given by

(1)

where the value of is an affine function of the average lu-
minance in the image, (3)

(2)

The coefficient of the affine function were defined experimen-
tally as follows: a high or average key image is not globally com-
pressed and is therefore assigned . As the average lu-
minance decreases, the exponent decreases, increasing the
sensitivity for dark areas. The average luminance is com-
puted by taking the average of the log-encoded pixels

(3)

where is the number of pixels in the luminance image , and
is a pixel value in .

B. Step 2: Local Adaptation

After global processing, local adaptation is performed using a
surround-based Retinex method. Traditionally, surround-based
Retinex methods [4]–[6] compute a new value for each pixel by
taking the difference between the log-encoded treated pixel and
the log-encoded value of a mask, as described in (4). The mask
represents a weighted average of the treated pixel’s surrounding
area

(4)

where is the luminance image and mask is computed by con-
volving the luminance with a surround function.

A drawback of surround-based methods is that small filters
tend to make pure black or pure white low contrast areas turn
gray. This is due to local normalization. We overcome this
problem by introducing a weighting factor that ensures
the conservation of white and black areas.

Each pixel value of the luminance image is computed
as follows:

(5)

where is the pixel coordinate. The image is encoded
in floating points in the range . We temporarily scale it to
a larger range and clip it to a minimum value of 0.01 in order
to perform the logarithm operation in the range . The
log-encoded image is then normalized back to 1 without loss of
information

(6)

As for , it weighs the mask depending on the pixel values at
coordinate

(7)

The factor is based on a sigmoid function and maps white
to white and black to black, which is necessary to obtain vi-
sually pleasing images. For a pixel of high intensity, the mask
is weighted by a value close to 0. Since the mask is subtracted
from the log-encoded luminance, it effectively keeps the pixel
bright. Similarly, a pixel of low intensity is weighted by a value
close to 1, which has the effect of maintaining black. This func-
tion lets the middle gray values change without constraint while
restricting the black to remain black and the white to remain
white.

Another important drawback of surround-based Retinex
methods is that there is a tradeoff between the increase in local
contrast and a good rendition of the image. A small surround
allows a significant increase in local contrast but induces halo
artifacts along high-contrast edges. Using a larger surround
reduces the artifacts, but provides less increase in local contrast.
This tradeoff has already been mentioned by Jobson et al. [19]
and Barnard and Funt [20], remarking that MSRCR caused
halo artifacts along high-contrast edges.

Our adaptive filter method prevents halo artifacts by adapting
the shape of the filter to the high-contrast edges in the image.
Thus, the filter follows image contours. In this way, a bright area
has less influence on the treatment of a neighboring dim area.
This modification does not change the principle of Retinex sur-
round-based methods, that is, to compute the difference between
each pixel value and a weighted average of its surround. What
changes with the adaptive filter method is the way the mask is
computed. Since the filter is different for each pixel, it is not
possible to use a convolution anymore. The mask is thus com-
puted specifically for each pixel using

(8)

where is the angle of the radial direction, is the distance to
the central pixel and is defined as follows:

no high-contrast edge was crossed along
a high-contrast edge was crossed along .

The value of the mask at coordinate is given by a
weighted average of pixels surrounding the position . The
weights of surrounding pixels are given by a Gaussian function,
whose spatial constant varies according to the image high-con-
trast edges. Practically, it is done by selecting one pixel after
the other in a radial manner. The first pixel to be selected is the
central pixel. Then, all pixels along a radial direction are added,
weighted by a Gaussian function with spatial constant . If
an edge is crossed along the radial direction, is assigned a
smaller value and keeps the same value until with

. The weighted sum of pixels continues for each
direction until the surround is completed. For each new radial
direction, is reset to its initial value . The weighted sum



MEYLAN AND SÜSSTRUNK: HIGH DYNAMIC RANGE IMAGE RENDERING WITH A RETINEX-BASED ADAPTIVE FILTER 2825

Fig. 4. Construction of the adaptive filter for the pixel indicated by the cross.
Top: Luminance image 	 . Bottom left: Luminance image segmented with a
Canny edge detector. Bottom right: Three-dimensional representation of the
filter corresponding to the pixel indicated by the cross.

of pixels is normalized by the sum of weights so that each pixel
has an equal contribution to the mask even if it is surrounded
by edges. The numerical values for and are chosen to be
fractions of the image size. Experimentally, we have found that

needs to be at least to avoid halos in most of our
images. We did not use to ensure that no artifacts will
be introduced by the hard threshold even when the edge is very
close to the treated pixel. Some limitations of precision arise
from the fact that a pixel has only eight neighbors. Therefore,
there are only eight possible radial directions to explore from
the central pixel. The surround is covered recursively starting
from the center. Each pixel is used only once in the weighted
sum.

C. Edge Detection

We use a Canny edge detector to detect high-contrast edges
[37]. The Canny method finds edges by looking for global
maxima of the image gradient. It detects strong and weak
edges. Weak edges appear in the output only if they are con-
nected to strong edges. The thresholds for strong and weak
edges are fixed values chosen experimentally and kept the same
for all images. Fixed thresholds are desirable since we only
want to detect high-contrast edges. It is, thus, possible to obtain
no edges for an image that has no high-contrast edge and where
circular, nonadaptive surrounds are sufficient.

The construction of the filter according to a segmented image
is illustrated in Fig. 4. The top and bottom left images represent
the original image and its corresponding edge map, respectively.
The filter was computed for the pixel indicated by the cross. The
bottom right image shows the corresponding adaptive filter.

D. Post-Processing: Histogram Scaling

A final processing is needed to remove outliers and to scale
the luminance before it is integrated back into the color image
processing. This is done using histogram scaling and clipping.
1% of the pixels are clipped at both extremities of the histogram.
It is also possible to improve the final result with a gamma cor-
rection depending on the output device characteristics.

IV. RETINEX-BASED ADAPTIVE FILTER METHOD:
COLOR PROCESSING

Our method takes inspiration from the HVS, which treats
chromatic and achromatic data independently. In the retinal
pathways, the LMS signals captured by the cones are decor-
related. After being processed by subsequent neural stages,
they form two major parallel circuits. One is achromatic and
nonopponent. The other is chromatic and opponent [38], [39].

Based on this knowledge, our method uses a principal com-
ponent analysis (PCA) to decorrelate the RGB representation of
the input image into three principal components. Our motivation
is that PCA has properties that intrinsically leads to an opponent
representation of colors. In [40], Buchsbaum and Gottschalk de-
scribe the relation between PCA and the HVS. They show that
optimum transformations in terms of information processing,
such as PCA, result in one component that is all positive and has
the largest share of signal energy. It is the achromatic channel,
carrying luminance information. The second and the third com-
ponents have one zero-crossing and two zero-crossing, respec-
tively. They represent the opponent channels for chrominance:
R-G and Y-B.

In the previous section, we described the treatment applied to
the luminance channel only. The result of the luminance pro-
cessing is inserted back into the parallel color image processing
as illustrated in Fig. 3. After the global power function, we take
the logarithm of the RGB image in order to follow the same
steps that were applied to the luminance. Then, the log-encoded
image is transformed into a decorrelated space to obtain

. The principal component is replaced by the treated
luminance that was computed in parallel and recomposed
with the chrominance channels. The chrominance channels are
weighted by a factor , in order to compensate for the loss of
saturation induced by the increase in luminance. The increase in
luminance is partly due to the logarithm operation applied to .
Since this operation is similar to all images, we use a constant
factor . We found experimentally that is a suitable
value.

As mentioned before, applying a local processing separately
to R,G,B results in color shifts and graying-out of color. The
solution is to transform the image into a luminance chromi-
nance encoding. However, with most transforms, some lumi-
nance information remain in the chrominance and vice versa,
due to the nonorthogonality of the color space basis vectors. Un-
like most transforms, PCA provides an orthogonal representa-
tion of the luminance and chrominance components, which re-
sults in good color rendition when the luminance is processed.
A linear transformation such as YUV [36] provides good color
rendition as well, but the resulting images are slightly different.
Fig. 7 shows an image treated by our algorithm using PCA trans-
form and one using YUV transform. The image computed using
YUV looks slightly green but it is hard to justify which one is
more visually appealing. The advantages of PCA is its perfect
decorrelation between luminance and chrominance. It works
well for natural images, which contain a reasonable diversity of
colors. However, particular cases such as a singular color image
would lead to an ill-conditioned transformation matrix and thus
to the failure of the PCA algorithm. This does not happen when
treating natural images even in the presence of a color cast, but
is more likely to happen with synthetic images.
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Fig. 5. Edge-preserving properties of the mask prevents areas of different in-
tensity to influence areas beyond high-contrast edges. Top: Input image 	 .
Bottom left: Mask with adaptive filter. Bottom right: Mask without adaptive
filter.

Fig. 6. In the case of fast bilateral filtering, the weight of one pixel is decreased
if its intensity is different from that of the intensity of the treated pixel. How-
ever, the weight increases again if the intensity of the next pixel is similar to
the currently treated pixel. With our method, as soon as a high-contrast edge is
detected, the weight of the current pixel is decreased as well as that of pixels
located after the edge.

Fig. 7. Difference between using a PCA and a YUV transform to compute the
luminance. The image computed using YUV looks slightly green. Left: Image
computed using PCA. Right: Image computed using YUV. This image is cour-
tesy of Xiao, et al. (Color version available online at http://ieeexplore.ieee.org.)

V. REDUCING COMPUTATIONAL COMPLEXITY

A. Luminance Processing

The use of an adaptive filter instead of a fixed surround shape
involves a significant increase in computational complexity. In-
deed, when the filter is the same for each pixel, the mask can ef-
ficiently be computed by a multiplication in the Fourier domain.
The introduction of the adaptive filter prevents the use of a con-
volution and therefore makes the method computationally very
expensive. The adaptive filter method before simplification has

an order of complexity of , where is the number
of pixels in the image. The first term is due to the difference
operation and the term is due to the mask computation.

We propose two solutions to reduce the computational time.
The first solution consists in limiting the size of the surround
by taking the decay of the Gaussian weighting function into ac-
count. Our default value for the radius surround size is

. This reduces the computational complexity to
.

The second solution is to use a downsampled version of the
image to compute the mask. The mask is then upsampled be-
fore being subtracted from the high resolution image (9). The
upsampling and downsampling operations are performed using
bilinear interpolation. A similar method to reduce the computa-
tional complexity was introduced by Moroney [41].

Let us use the symbol for downsampling by and and
for upsampling by . Equations (5) and (8) for computing

the treated luminance become

(9)

(10)

where is chosen such that the larger dimension of the down-
sampled image equals a constant, whose default value is
200.

Considering this second simplification, the computation time
of the mask is fixed and is bounded by .
That makes the computational complexity of order

(11)

B. Color Processing

Section V-A analyzes the computational complexity to
process the luminance channel only. In fact, the RGB input
image first has to be transformed to a luminance chrominance
encoding, which requires operations. Processing only
the luminance not only provides good color rendition but also
requires less computational time. Indeed, treating separately
the R,G,B channels would multiply by three the complexity of
(11), which is significantly more time consuming than adding
an operation. The PCA transform costs more in term
of computational time than a fixed transform such as YUV.
However, the additional time spent to compute the PCA is
neglectable compared to the time spent to compute the mask.

VI. DISCUSSION, COMPARISONS AND RESULTS

In this section, we justify the need for an adaptive filter by
showing an example where it helps to prevent halo artifacts.
Then we compare our method to other local tone mapping
methods: the MSRCR of Rahman et al. [6], the gradient atten-
uation method of Fattal et al. [27] and the fast bilateral filtering
method of Durand and Dorsey [31], currently recognized as
one of the best published methods [32].
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Fig. 8. Adaptive filter method allows to preserve detail visibility even along
high-contrast edges. Left: nonadaptive filter method. Right: Adaptive filter
method. This image is courtesy of Greg Ward. (Color version available online
at http://ieeexplore.ieee.org.)

Fig. 9. Left: Image treated with MSRCR. Right: Image treated with the adap-
tive filter method. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 10. Left: Image treated with Fattal’s gradient attenuation method.
Right: Image treated with the adaptive filter method. (Color version available
online at http://ieeexplore.ieee.org.)

A. Importance of the Adaptive Filter

Fig. 8 illustrates the difference between using an adaptive
filter that follows the high-contrast edges in the image and a non-
adaptive filter, whose shape is circular for every pixel. The two
images were computed with exactly the same method except for
the filter’s shape. The nonadaptive case was computed with an
edge map set to zero everywhere, such that the surround’s shape
is always circular and does not follow high-contrast edges.

The benefit of the adaptive filter is clearly shown in Fig. 8:
The detail of the tower and in the forest are more visible using
the adaptive filter method.

This is due to the edge-preserving properties of the mask as
illustrated in Fig. 5. The use of the adaptive filter method pre-
vents the areas of different intensity to influence areas beyond
high-contrast edges.

Fig. 11. Top: Gamma-encoded image. Middle: Image treated with the adaptive
filter method. Bottom: Image treated with the fast bilateral filtering method.
(Color version available online at http://ieeexplore.ieee.org.)

B. Comparison With Other Methods

Our algorithm finds its basis in the MSRCR algorithm of
Rahman et al. [6]. It is therefore natural to make a compar-
ison with their performances. The MSRCR images were ob-
tained with the free version of the software “PhotoFlair” using
the default settings,1 which puts “demo” tags across the image.
Fig. 9 shows a comparison between MSRCR and our adaptive
filter method. The benefit of the adaptive filter is clearly seen
on both images. With MSRCR, there is a shadow on the person
near the window and on the red dog. Moreover, the black t-shirt
tends to become gray. Due to the adaptive filter, our method does
not generate halos on the face of the person and on the t-shirt.
The factor (5) prevents the t-shirt to turn gray. Similarly, on
the bottom image, the detail of the tower is more visible on the
image treated by the adaptive filter method.

The presence of halo artifacts comes from the fact that
MSRCR is based on the assumption that the illuminant is
spatially smooth. This results in a mask similar to the bottom

1PhotoFlair was developed by TruView Imaging Company (http://trueview.
com).
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Fig. 12. Results of the Retinex-based adaptive filter method. Left: Gamma-encoded image. Right: Image treated with our method. (Color version available online
at http://ieeexplore.ieee.org.)

right panel of Fig. 5, which leads to halos when subtracted from
the log-encoded luminance. Other the methods that are based
on the same smooth illuminant assumption [5], [6], [12], [16]
suffer from the same drawback. Nevertheless, they are good at
rendering images of lower dynamic range or in the absence of
large intensity ratios.

Fattal et al. [27] treat HDR images with a gradient attenuation
method. Fig. 10 shows their result. Their method is very good at
increasing local contrast without creating halo artifacts but the
effect tends to be exaggerated. A border effect appears on the
left of the image and the colors seem unnatural.

C. Comparison With Fast Bilateral Filtering

We chose to compare our method to the fast bilateral filtering
method developed by Durand and Dorsey [31] for two reasons.
First, it is recognized as one of the best algorithms tested on
HDR images that has been published so far [32]. Second, al-
though the initial approach is different, the actual treatment of
pixels is comparable to that of our method. Fast bilateral filtering

is based on an alternative of anisotropic diffusion to enhance
boundaries while smoothing nonsignificant intensity variations.
The new pixel values are computed by weighting surrounding
pixels as a function of their spatial position as well as their inten-
sity difference. Our method computes the new pixel values by
weighting surrounding pixels as a function of their spatial posi-
tion and their spatial relation to high-contrast edges. Our method
gives more importance to spatial information. Fig. 6 illustrates
this difference. In the case of fast bilateral filtering, the weight
of one pixel is decreased if its intensity is different from that of
the intensity of the treated pixel. However, the weight increases
again if the intensity of the next pixel is similar to the currently
treated pixel. With our method, as soon as a high-contrast edge
is detected, the weight of the current pixel is decreased as well
as that of pixels located after the edge.

Fig. 11 compares the images obtained with the two methods.
We observe that Durand and Dorsey’s method is better at in-
creasing the local contrast in bright areas while our method pro-
vides a better result in dim areas. The head of the person is ren-
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dered better by our algorithm. This is due to the adaptive shape
of the filter that prevents the sky to influence the color of the face
and thus avoids the usual backlight effect. The way the color is
rendered also influences the judgment of images. Fast bilateral
filtering algorithm renders images that are more saturated than
our method. It is suitable for some images but lead to unnatural
impression in other cases, such as the reddish skin in Fig. 11.

D. Image Acquisition and Results

Producing an HDR image that is an accurate representation
of the scene radiances is no longer an issue. Recently developed
methods allow any capturing devices to virtually produce HDR
images using a multiple exposure technique [42], [43], or by
simultaneously sampling the spatial and exposure dimensions
of image radiances [44]. HDR images are usually represented
in floating point. They are stored in a special format called rgbe
[45]. Our algorithm takes rgbe images as input.

For this paper, we use radiance maps obtained with multiple
exposure techniques [42], [43] as well as raw images taken with
a Canon EOS30 and a Canon Powershot G2 digital camera. We
assume that input images use sRGB primaries [46]. No color
transformation is applied prior to processing. For the images
that were generated by the multiple exposure technique [42],
there is no guarantee that the images are in sRGB color space.
As many of them are used in the literature, we still use them for
comparison and assume they are encoded in sRGB. The output
of our algorithm are 24 bits/pixel images rendered for standard
displays, i.e., the color image encoding is sRGB [46].

Our method provides a solution for rendering HDR images
using a spatial method. By combining spatial filtering with a
segmentation to detect high-contrast boundaries, we provide a
way to reduce halo artifacts. Moreover, the introduction of a
PCA to compute the luminance and chrominance channels al-
lows good color rendition. Fig. 12 shows HDR images treated
by our algorithm. The high-resolution images and the code are
available for download on our web page [47].

VII. CONCLUSION

The problem of rendering HDR images has been widely
studied and a large number of methods exists. Although they
enhance the quality of rendered images, these methods still
suffer from some problems. Common drawbacks are the ap-
parition of halo artifacts when increasing the local contrast,
graying-out of low contrast areas and bad color rendition.

We provide a method to render HDR images taking inspira-
tion from the Retinex model of color vision. In particular, our
method is based on surround-based Retinex but uses an adap-
tive filter whose shape follows the high-contrast edges of the
image. In this way, the influence of a bright area on a neigh-
boring dim area is decreased, thus preventing halo artifacts. We
also include a sigmoid function that weighs the mask in order to
prevent the graying-out of pure white or pure black low contrast
areas. The Retinex-based adaptive filter is applied to the lumi-
nance channel only, which is defined by the first component of
a PCA. Using PCA provides an image-dependent color-space
transformation that guarantees orthogonality between channels.

It minimizes the chromatic changes induced by the processing
of luminance.

We tested our method on various HDR images, compared it
with other algorithms and showed that it efficiently increases
the local contrast while preventing halo artifacts and provides a
good rendition of colors.
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